|Table of Contents|

Bioinformatics Analysis of Gene GmGW2 in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年03期
Page:
379-384
Research Field:
Publishing date:

Info

Title:
Bioinformatics Analysis of Gene GmGW2 in Soybean
Author(s):
(1.College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; 2.College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; 3.Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People′s Republic of China, Beijing 102206, China)
Keywords:
Soybean Zhonghuang 10 GmGW2 Bioinformatics analysis
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.03.0379
Abstract:
The GW2 gene in diverse plants can control grain width and grain weight. In order to predicet and analysis the function of GW2 gene in soybean, the cDNA sequence of the GmGW2 gene was successfully cloned from soybean by the method of homologous cloning. In order to continue the in-depth study, the full-length DNA sequence of GmGW2 gene was cloned from soybean Zhonghuang 10 and detailed bioinformatics analysis was carried out in this experiment. The results showed that the cloned GmGW2 was consisted of 8 exons and 7 introns, encoding 431 amino acids, which was predicted to be located in the nucleus or cytoplasm, without transmembrane domain and signal peptide, and it was an unstable hydrophilic protein with a Zinc finger, RING-type domain. The secondary and third structure prediction analysis showed that α-helix and irregular curl were the main structural elements in the overall protein structure. Phylogenetic tree showed that the gene was closely related to Cajanus cajan, Abrus precatorius and Cicer arietinum. GmGW2 gene may also play a regulational function in soybean seed traits above the results. The results of this study laid the foundation for further digging and verifying the function of GmGW2 gene, aiming to provide useful information for soybean yield breeding.

References:

[1]余永亮, 梁慧珍, 王树峰, 等. 中国转基因大豆的研究进展及其产业化[J]. 大豆科学, 2010, 29(1): 143-150. (Yu Y L, Liang H Z, Wang S F, et al. Research progress and commercialization on transgenic soybean in China[J]. Soybean Science, 2010, 29(1): 143-150.)
[2]查霆, 钟宣伯, 周启政, 等. 我国大豆产业发展现状及振兴策略[J]. 大豆科学, 2018, 37(3): 135-140. (Zha T, Zhong X B, Zhou Q Z, et al. Development status of China’s soybean industry and strategies of revitalizing[J]. Soybean Science, 2018, 37(3):135-140.)
[3]邱丽娟, 马岩松, 刘章雄, 等. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(1): 43-52.(Qiu L J , Ma Y S, Liu Z X, et al. Effect of population structure on prediction accuracy of soybean 100-seed weight by genomic selection[J]. Acta Agronomica Sinica, 2018, 44(1): 43-52.)
[4]Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5):623-630.
[5]Zhang Y D, Zheng J, Liang Y L, et al. Functional marker dvelopment and effect analysis of grain size gene GW2 in extreme grain size germplasm in rice[J]. Rice Science, 2015, 22(2):65-70.
[6]Q, Lin L, Yang X H, et al. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight [J]. BMC Plant Biology, 2010, 10(1):143.
[7]孔曼丽, 李彩云, 孙清鹏, 等. 玉米E3泛素连接酶类基因ZmGW2-1的克隆及表达分析[J]. 安徽农业大学学报, 2014, 41(6):1004-1011. (Kong M L, Li C Y, Sun Q P,et al. Isolation and expression analysis of the E3 ubiquitin ligase encoding gene ZmGW2-1 in maize[J]. Journal of Anhui Agriculture University, 2014, 41(6): 1004-1011.)
[8]张雨良, 王希东, 张桦, 等. 大麦产量相关基因HvYrg1的克隆及植物RNA干扰载体的构建[J]. 植物研究, 2009, 29(4):445-452.(Zhang Y L,Wang X D, Zhang H, et al. Cloning of hordeum vulgare yield related gene HvYrg1 and construction of its plant RNA interfere vector[J]. Bulletin of Botanical Research, 2009, 29(4):445-452.)
[9]Su Z, Hao C, Wang L, et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat [J]. Theoretical and Applied Genetics, 2011, 122(1): 211-223.
[10]James S, Peter S, Jemima B, et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains[J]. Theoretical Applied Genetics, 2016, 129(6):1099-1112.
[11]宋新新, 袁月, 孙海龙, 等. 葡萄VvGW2基因的克隆及表达[J]. 江苏农业学报, 2015, 31(2):434-440. (Song X X, Yuan Y, Sun H L, et al. Cloning and expression of VvGW2 gene in grape[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(2):434-440.)
[12]李会勇, 曹言勇, 路运才, 等. 拟南芥中RING型E3泛素连接酶基因AtGW2的克隆和功能分析[J]. 植物遗传资源学报, 2011, 12(3): 448-454.(Li H Y, Cao Y Y,Lu Y C, et al. Cloning and functional analysis of Arabidopsis thaliana AtGW2, a RING-type E3 ubiquitin ligase protein[J]. Journal of Plant Genetic Resources, 2011, 12(3): 448-454.)
[13]Xia T, Li N, Dumenil J, et al. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis[J]. Plant Cell, 2013, 25(9):3347-3359.
[14]熊鹤雯, 吴志慧, 段思宇, 等. 大豆基因GmGW2的克隆与转化[J]. 生物技术通报, 2015(8): 82-87.(Xiong H W, Wu Z H, et al. Cloning and transformation of gene GmGW2 in soybean[J]. Biotechnology Bulletin, 2015(8): 82-87.)
[15]王举.生物信息学基础及应用[M]. 北京: 清华大学出版社, 2014, 126-130. (Wang J. Bioinformatics basics and applications [M]. Bei Jing: Tsinghua University Press, 2014:126-130.)
[16]Jeremy S, Steven B, Jessica S, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278):178-183.
[17]陆瑜. 植物中RING型锌指蛋白研究进展[J]. 安徽农学通报, 2017(8):42-45. (Lu Y. Research progress of ring-type zinc finger protein in plants[J]. Anhui Agricultural Science Bulletin, 2017(8):42-45.)

Memo

Memo:
-
Last Update: 2019-05-30