|Table of Contents|

Optimization of Agrobacterium-mediated Genetic Transformation of Soybean with Transient Expression of GUS Gene(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年03期
Page:
353-359
Research Field:
Publishing date:

Info

Title:
Optimization of Agrobacterium-mediated Genetic Transformation of Soybean with Transient Expression of GUS Gene
Author(s):
(Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China)
Keywords:
Agrobacterium tumefaciensSoybean genetic transformationTransformation rateTransient expression of GUS gene
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.03.0353
Abstract:
High transformation efficiency is an important factor for plant molecular breeding. Agrobacterium tumefaciens-mediated transformation is commonly used in plant genetic transformation because its higher heritability and lower copy number. To optimize the soybean genetic transformation system used in our laboratory, we optimized Agrobacterium tumefaciens-mediated transformations of Dongnong 47, Kennong 18 and B12088 soybean varieties of germination time, bean cutting methods, infestation time, co-culture method and co-culture time with the expression of 35S∶GUS of pCAMBIA3301. The results showed that the expression level of GUS was highest when Dongnong 47 was germinated for 1 d, infested for 30 min and Kennong 18 and B12088 germinated for 12 h, infected for 30 min. In other treatments, the results of the three varieties were consistent. The GUS gene expression was highest when we cut the soybean cotyledonary with dipped Agrobacterium and when the cotyledon′s wound is placed face down and co-cultivated for 3-5 d in the dark. Under the optimal conditions, the Kennong 18 showed the highest transformation efficiency. This study provides an improved protocol for Agrobacterium tumefaciens-mediated transformation of soybean cotyledonary nodes that can be utilized for soybean genetic transformation.

References:

[1]王志坤, 李文滨. 转基因科普系列—转基因大豆[J]. 大豆科技, 2017(2):52-53. (Wang Z K, Li W B. Genetically modified popular science series-genetically modified soybeans[J]. Soybean Technology, 2017(2):52-53.)
[2]常健敏, 李丹丹, Arun S, 等. 转SiDGAT1高油大豆T-3株系的鉴定[J]. 作物杂志, 2014(5): 219-259.(Chang J M, Li D D, Arun S, et al. Identification of transgenic SiDGAT1 high oil soybean T-3 strain[J]. Crops, 2014(5):219-259.)
[3]Yang X. Analysis of the copy number of exogenous genes in transgenic cotton using real-time quantitative PCR and the 2-ΔΔCT method[J]. African Journal of Biotechnology, 2012, 11(23), 6226-6233.
[4]Somers D A, Samac D A, Olhoft P M. Recent advances in legume transformation[J]. Plant Physiology, 2003, 131: 892-899.
[5]Hinchee M A, Connor Ward D V, Newell C A, et al. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer[J]. Biotechnology, 1988, 6(8): 915-922.
[6]Olhoft P M, Flagel L E, Donovan C M. Efficient soybean transfonnation using hygromycin B selection in the cotyledonary-node method[J]. Planta, 2003,216(5):723-735.
[7]Olthoft P M, Somer D A. L-cysteine increases Agrobacterium mediated T-DNA delivery into soybean cotyledonary node cells[J]. Plant Cell Reports, 2001, 20(8): 706-711.
[8]Xue R G, Xie H F, Zhang B. A multi-needle-assisted transforma-tion of soybean cotyledonary node cells[J]. Biotechnology Letters, 2006, 28(19):1551-1557.
[9]陈李淼, 田星星, 单志慧, 等. 利用农杆菌介导法转化大豆子叶节的影响因素研究[J]. 大豆科学, 2012, 31(1):17-23. (Chen L M, Tian X X, Shan Z H, et al. Optimization of the factors affecting genetic transformation of soybean coty-ledonary node mediated by agrobacterium tumefacines[J]. Soybean Science, 2012, 31(1):17-23.)
[10]翟锐, 高乐, 丁雪妮, 等. 农杆菌介导大豆子叶节遗传转化体系的优化[J]. 大豆科学, 2015, 34(5):768-775. (Zhai R, Gao L, Ding X N, et al. Optimization of cotyledonary-node agrobacterium-mediated soybean transformation system[J].Soybean Science, 2015, 34(5):768-775.)
[11]Dang W, Wei Z M. An optimized agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes[J]. Plant Science, 2007, 173(4): 381-389.
[12]Li S X, Cong Y H, Liu Y P, et al. Optimization of agrobacterium-mediated transformation in soybean[J]. Frontiers in Plant Science, 2017, 8:246.
[13]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higherplants[J]. The EMBO Journal, 1987, 6(13): 3901-3907.
[14]余永亮, 梁慧珍, 王树峰, 等.中国转基因大豆的研究进展及其产业化[J].大豆科学, 2010, 29(1): 143-150. (Yu Y L, Liang H Z, Wang S F, et al. Research progress and commercialization on transgenic soybean in China[J]. Soybean Science, 2010, 29(1): 143-150. )
[15]应珊, 何晓薇, 王秀荣, 等. 影响农杆菌介导的大豆转化效率的因素研究[J]. 分子植物育种, 2008,6(1): 32-40. (Ying S, He X W, Wang X R, et al. Assessment of factors affecting the transformation efficiency of soybean cotyledonary-node agrobacterium-mediated transformation system [J]. Molecular Plant Breeding, 2008,6(1): 32-40.)

Memo

Memo:
-
Last Update: 2019-05-30