|Table of Contents|

Process in Bioactive Peptides During Soybean Fermentation and Their Potential Health Benefits(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年01期
Page:
159-166
Research Field:
Publishing date:

Info

Title:
Process in Bioactive Peptides During Soybean Fermentation and Their Potential Health Benefits
Author(s):
ZENG Yan ZHU Yue-ming ZHANG Jian-gang YUE Xiao-ping SUN Yuan-xia
(Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China)
Keywords:
Soybean food Fermentation Peptides Angiotensin-converting enzyme inhibitors
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.01.0159
Abstract:
Peptides from fermented soybean products have been proved to possess many physiological activities, such as antioxidant, antihypertensive, antidiabetic, and anticancer potentials. Moreover, the bioactivity of these peptides are closely related to the microbial strains and fermentation process used in the fermented soybean products. However, the study and application of functional food and bioactive peptides derived from soybean fermentation in China is still in its infancy now. In view of this situation, this article reviews the production of fermented soybean products and the application potential of their bioactive peptides in prevention and treatment of several metabolic diseases, and also prospects the future research directions, which will provide some guidance for improving the research advance on fermented soybean products and their bioactive peptides in China.

References:

[1]Samurailatpam S, Amit K R. Production of bioactive peptides during soybean fermentation and their potential health benefits[J]. Trends in Food Science and Technology, 2016, 50(1): 1-10.
[2]张梦涵,丁长河. 发酵大豆食品功能性研究现状[J]. 食品工业, 2018, 39(6): 241-245. (Zhang M H, Ding C H. Research of functionality in fermented soybean food [J]. The Food Industry, 2018, 39(6): 241-245.)
[3]姚小飞, 石慧. 大豆多肽的功能特性及其开发应用进展[J]. 中国食物与营养, 2009(7): 21-24. (Yao X F, Shi H. Functional characteristics of soybean polypeptide and its development and application progress[J]. Food and Nutrition in China, 2009(7): 21-24.)
[4]张金兰,张建,纪凤娣, 等.传统大豆发酵食品中主要功能细菌的研究进展[J]. 中国酿造, 2011(1): 5-8. (Zhang J L, Zhang J, Ji F D, et al. Research progress on important functional bacteria in fermented soybean food[J]. China Brewing, 2011(1): 5-8.)
[5]杨福明, 赵阳, 侯静, 等. 传统大豆发酵食品及其工业化开发关键技术[J].中国调味品, 2013, 38(8): 18-21.(Yang F M, Zhao Y, Hou J, et al. Key technology progress of traditional fermented soybean food industrialization [J]. China Condiment, 2013, 38(8): 18-21.)
[6]刘新旗, 涂丛慧, 张连慧, 等. 大豆蛋白的营养保健功能研究现状[J]. 北京工商大学学报(自然科学版), 2012, 30(2): 1-6. (Liu X Q, Tu C H, Zhang L H, et al. Research status of nutritional and health functions of soybean protein[J]. Journal of Beijing Technology and Business University(Natural Science Edition), 2012, 30(2): 1-6.)
[7]田琨, 管娟, 邵正中, 等.大豆分离蛋白结构与性能[J]. 化学进展, 2008(4): 565-573. (Tian K, Guan J, Shao Z Z, et al. Structural and functional study of soybean protein isolation[J]. Progress in Chemistry, 2008(4): 565-573.)
[8]Sanjukta S, Rai A K, Muhammed A, et al. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation[J]. Journal of Functional Foods, 2015, 14: 650-658.
[9]Weng T M, Chen M T. Effect of two-steps fermentation by Rhizopus oligosporus and Bacillus subtilis on protein of fermented soybean[J]. Food Science and Technology Research, 2011, 17: 393-400.
[10]梁恒宇, 邓立康, 林海龙. 传统发酵大豆食品中乳酸菌的分布、功能和应用[J]. 食品科学, 2013, 34(19): 381-385. (Liang H Y, Deng L K, Lin H L. Distribution, function and application of lactic acid bacteria in fermented soybean food[J]. Food Science, 2013, 34(19): 381-385.)
[11]李学莉, 胡海娥, 张金桃, 等. 乳酸菌发酵豆乳研究进展[J]. 食品工业科技, 2016, 37(12): 385-390. (Li X L, Hu H E, Zhang J T, et al. Research progress on fermented soybean milk by lactobacillus[J]. Science and Technology of Food Industry, 2016, 37(12): 385-390.)
[12]周锦绣, 林奇, 唐卿燕. 我国腐乳生产用菌的研究现状[J]. 食品科技, 2007 (11): 20-23. (Zhou J X, Lin Q, Tang Q Y. Research status of bacteria used in humus production in China[J]. Food Science and Technology, 2007 (11): 20-23.)
[13]蒋立文. 发酵豆豉的研究进展[J]. 食品安全质量检测学报, 2013, 4(6): 1803-1809. (Jiang L W. Research progress on fermented black bean sauce[J]. Journal of Food Safety and Quality, 2013, 4(6): 1803-1809.)
[14]吴海兰, 吴春生, 丁晓雯. 日本传统发酵食品味噌与中国豆豉的比较[J]. 中国调味品, 2014, 39(2): 134-138. (Wu H L, Wu C S, Ding X W. Comparison between miso and tempeh in Japanese traditional fermented food[J]. China Condiment, 2014, 39(2):134-138.)
[15]贡汉坤, 魏福华, 徐大好. 豆酱曲霉及产酶特性[J]. 农产品加工(学刊), 2007(9): 21-23. (Gong H K, Wei F H, Xu D H. Aspergillus legume and its enzyme production characteristics[J]. Agricultural Products Processing (Academic Journal),2007(9): 21-23.)
[16]周贺霞, 马良, 张宇昊. 食品中降血压肽的研究现状及应用[J]. 食品与发酵科技, 2012, 48(1): 11-15. (Zhou H X, Ma L, Zhang Y H. Research status and application of hypotensive peptide in food[J]. Food and Fermentation Technology, 2012, 48(1): 11-15.)
[17]Ibe S, Yoshida K, Kumada K, et al. Antihypertensive effects of natto, a traditional Japanese fermented food, in spontaneously hypertensive rats[J]. Food Science and Technology Research, 2009, 15: 199-202.
[18]Zhang J H, Tatsumi E, Ding C H, et al. Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product[J]. Food Chemistry, 2006, 98: 551-557.
[19]Kuba M, Tanaka K, Tawata S, et al. Angiotensin-I converting enzyme inhibitory peptides isolated from tofuyo fermented soybean[J]. Bioscience, Biotechnology and Biochemistry, 2003, 67: 1278-1283.
[20]Ma Y, Cheng Y, Yin L, et al. Effects of processing and NaCl on angiotensin I-converting enzyme inhibitory activity and γ-aminobutyric acid content during sufu manufacturing[J]. Food and Bioprocess Technology, 2012, 6: 1782-1789.
[21]Wang L J, Saito M, Tatsumi E, et al. Antioxidative and angiotensin I-converting enzyme inhibitory activities of sufu (fermented tofu) extracts[J]. Japan Agricultural Research Quarterly, 2003, 37(2):129-132.
[22]Li F J,Yin L J, Cheng Y Q, et al. Angiotensin I-converting enzyme inhibitory activities of extracts from commercial Chinese style fermented soypaste[J]. Japan Agricultural Research Quarterly, 2010, 44(2): 167-172.
[23]Nakahara T, Sano A, Yamaguchi H, et al. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 821-827.
[24]Shin Z I, Yu R, Par S A, et al. His-His-Leu, an angiotensin-I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo[J]. Journal of Agricultural & Food Chemistry, 2001, 49(6):3004-3009.
[25]Martinez-Villaluenga C, Torino M I, Martín V, et al. Multifunctional properties of soy milk fermented by Enterococcus faecium strains isolated from raw soy milk[J]. Journal of Agricultural & Food Chemistry, 2012, 60(41): 10235-10244.
[26]Tsai J S, Lin Y S, Pan B S, et al. Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk[J]. Process Biochemistry, 2006, 41(6):1282-1288.
[27]Vallabha V S, Tiku P K. Antihypertensive peptides derived from soy protein by fermentation[J]. International Journal of Peptide Research and Therapeutics, 2014, 20(2):161-168.
[28]Singh B P, Vij S. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality[J]. LWT - Food Science and Technology, 2017, 86: 293-301.
[29]Sanjukta S, Rai A K, Muhammed A, et al. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation[J]. Journal of Functional Foods, 2015, 14: 650-658.
[30]Zhu Y P, Fan J F, Cheng Y Q, et al. Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2[J]. Food Control, 2008, 19(7): 654-661.
[31]Watanabe N, Fujimoto K, Aoki H. Antioxidant activities of the water-soluble fraction in tempeh-like fermented soybean (GABA-tempeh)[J]. International Journal of Food Sciences & Nutrition, 2007, 58(8): 577-587.
[32]田明慧, 林亲录, 梁盈, 等. 植物源性食物中活性肽氨基酸组成的研究进展[J]. 食品与发酵工业, 2014, 40(6): 110-116. (Tian M H, Lin Q L, Liang Y, et al. Advances in studies on the composition of active peptide amino acids in plant-based foods[J]. Food and Fermentation Industries, 2014, 40(6): 110-116.)
[33]Yu B, Lu Z X, Bie X M, et al. Scavenging and anti-fatigue activity of fermented defatted soybean peptides[J]. European Food Research and Technology, 2008, 226(3): 415-421.
[34]Fan J, Zhang Y, Chang X, et al. Changes in the radical scavenging activity of bacterial-type douchi, a traditional fermented soybean product, during the primary fermentation process[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(12): 2749-2753.
[35]Kim S L, Chi H Y, Kim J T, et al. Evaluation of antioxidant activities of peptides isolated from Korean fermented soybean paste, chungkukjang [J]. Korean Journal of Crop Science, 2011, 56(4): 349-360.
[36]Zhao D, Shah N P. Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation[J]. LWT - Food Science and Technology, 2014, 58(2): 454-462.
[37]Sumi C D, Yang B W, Yeo I C, et al. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics[J]. Revue Canadienne De Microbiologie, 2015, 61(2): 93-103.
[38]Yeo I C, Lee N K, Cha C J, et al. Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis, SCK-2 against Bacillus cereus[J]. Journal of Bioscience & Bioengineering, 2011, 112(4): 338-344.
[39]Schallmey M, Singh A, Ward O P. Developments in the use of Bacillus species for industrial production[J]. Canadian Journal of Microbiology, 2004, 50(1): 1-17.
[40]Cao X H, Liao Z Y, Wang C L, et al. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities[J]. Brazilian Journal of Microbiology, 2009, 40(2): 373.
[41]Onda T, Yanagida F, Tsuji M, et al. Production and purification of a bacteriocin peptide produced by Lactococcus sp. strain GM005, isolated from Miso-paste[J]. International Journal of Food Microbiology, 2003, 87(1-2): 153-159.
[42]Moreno M R F, Leisner J J, Tee L K, et al. Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium[J]. Journal of Applied Microbiology, 2002, 92(1): 147-157.
[43]Eom J S, Lee S Y, Choi H S. Bacillus subtilis HJ18-4 from traditional fermented soybean food Inhibits Bacillus cereus growth and toxin-related genes[J]. Journal of Food Science, 2014, 79(11): 2279-2287.
[44]Yeo I C, Lee N K, Cha C J, et al. Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis, SCK-2 against Bacillus cereus[J]. Journal of Bioscience and Bioengineering, 2011, 112(4): 338-344.
[45]Lee M H, Lee J, Nam Y D, et al. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food[J]. International Journal of Food Microbiology, 2016, 221: 12-18.
[46]王晓蕊. 豆酱中产细菌素屎肠球菌的筛选及特性分析[D]. 沈阳:沈阳农业大学, 2016: 23-30. (Wang X R. Screening and characteristic analysis of enterococcus enterococcus bacteriosa in soybean paste[D]. Shenyang: Shenyang Agricultural University, 2016: 23-30.)
[47]Yang H J, Kwon D Y, Min J K, et al. Unsalted soybeans fermented with Bacillus subtilis and Aspergilus oryzae, potentiates insulinotropic actions and improves hepatic insulin sensitivity in diabetic rats[J]. Nutrition & Metabolism, 2012, 9(1): 1-12.
[48]Kwon D Y, Sang M H, Ahn I S, et al. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro[J]. Nutrition, 2011, 27(2): 244-252.
[49]Yang H J, Kim H J, Kim M J, et al. Standardized chungkookjang, short-term fermented soybeans with Bacillus lichemiformis, improves glucose homeostasis as much as traditionally made chungkookjang in diabetic rats[J]. Journal of Clinical Biochemistry & Nutrition, 2013, 52(1): 49-57.
[50]葛喜珍, 刘海燕, 郑来丽, 等. 淡豆豉、黄大豆及黑大豆体内外抗蛋白非酶糖化作用研究[J]. 食品科学, 2008(10): 557-559. (Ge X Z, Liu H Y, Zheng L L, et al. Studies on the effect of antiproteinase and non-enzymatic saccharification in vitro of tempeh, soybean and black soybean[J]. Food Science, 2008(10): 557-559.)
[51]Lee J H, Nam S H, Seo W T, et al. The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells[J]. Food Chemistry, 2012, 131(4): 1347-1354.
[52]Song E K, Pai T, Lee H J. Cytotoxic effects of the peptides derived from traditional Korean soy sauce on tumorcell lines[J]. Food Science and Biotechnology, 1998, 7(2):1-5.
[53]Cavazos A, Morales E, Dia V P, et al. Analysis of lunasin in commercial and pilot plant produced soybean products and an improved method of lunasin purification[J]. Journal of Food Science, 2012, 77(5): 539-545.
[54]Blanca H, Chiachien H, Beno D L. Lunasin and Bowman-Birk protease inhibitor (BBI) in US commercial soy foods[J]. Food Chemistry, 2009, 115(2): 574-580.
[55]Hernández-Ledesma B, Hsieh C C, Lumen B O. Lunasin, a novel seed peptide for cancer prevention[J]. Peptides, 2009, 30(2): 26.
[56]Hsieh C C, Martínez-Villaluenga C, Lumen B O D, et al. Updating the research on the chemopreventive and therapeutic role of the peptide lunasin[J]. Journal of Science and Food Agriculture, 2017, 98(6): 2070-2079.
[57]Hsieh C C, Hernándezledesma B, Lumen B O D. Soybean peptide lunasin suppresses in vitro and in vivo 7, 2-dimethylbenz[a]anthracene-induced tumorigenesis[J]. Journal of Food Science, 2010, 75(9): 311-316.
[58]Fernández-Tomé S, Ramos S, Cordero-Herrera I, et al. In vitro chemo-protective effect of bioactive peptide lunasin against oxidative stress in human HepG2 cells[J]. Food Research International, 2014, 62(1): 793-800.

Memo

Memo:
-
Last Update: 2019-01-23