|Table of Contents|

Research Progress on Thermal Modification and Its Dissociation Association Action of Soy Proteins(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年01期
Page:
142-147
Research Field:
Publishing date:

Info

Title:
Research Progress on Thermal Modification and Its Dissociation Association Action of Soy Proteins
Author(s):
ZENG Jian-hua LIU Lin-lin YANG Yang ZHANG Na SHI Yan-guo ZHU Xiu-qing
(College of Food Engineering/Key Laboratory of Food Science and Engineering/Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150076, China)
Keywords:
Soybean proteins isolates(SPI) β-conglycinin Conglycinin Lipid protein Thermal modification Dissociation-association action
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2018.06.0142
Abstract:
The dissociation and association behavior is the currently hot spots research of soy proteins. Heat treatment contributes to the conformation of the soy protein for obtaining ideal functional properties by dissociation-association reaction. Therefore, the post-processing characteristics, quality and the application range of soybean products were determined by the thermal dissociation-association behavior of soybean protein. In this paper, the latest research status of soy protein components and the thermal modification of soy protein were summarized. And the latest research progress on thermal dissociation-association reaction process of soy protein [including SPI (soybean proteins isolates), β-conglycinin, conglycinin, lipid proteins] was reviewed. Moreover the interaction of soy protein components during the thermal dissociation-association processing was analyzed. In order to provide theoretical support for elucidating the dissociation-association mechanism and the application in production of soy protein in the heat treatment process.

References:

[1]Liu Y, Yang J, Lei L, et al. 7S protein is more effective than total soybean protein isolate in reducing plasma cholesterol[J]. Journal of Functional Foods, 2017, 36:18-26.
[2]Chen K I, Erh M H, Su N W, et al. Soyfoods and soybean products: From traditional use to modern applications[J]. Applied Microbiology & Biotechnology, 2012, 96(1):9.
[3]Economics, Statistics and Market Information System. Oil crops yearbook 2016[R].UAS: United States Department of Agriculture,2016.
[4]Debruyne I, Riaz M N. Soy base extract: Soymilk and dairy alternatives[M]. Lendon: Taylor & Francis Group, 2006.
[5]Caragay A B. Cancer - preventive foods and ingredients[J]. Arthritis & Rheumatism, 1992, 25(12):65-68.
[6]Reynolds L P, Wulsterradcliffe M C, Aaron D K, et al. Importance of animals in agricultural sustainability and food security[J]. Journal of Nutrition, 2015, 145(7):1377-1379.
[7]Samoto M, Maebuchi M, Miyazaki C, et al. Abundant proteins associated with lecithin in soy protein isolate[J]. Food Chemistry, 2007, 102(1):317-322.
[8]Utsumi S. Structure-function relationships of soy proteins[J]. Food Proteins & Their Applications, 1997:257-291.
[9]Wu N, Wang L, Yang X, et al. Comparison of flavor volatiles and some functional properties of different soy protein products[J]. Journal of the American Oil Chemists Society, 2011, 88(10):1621-1631.
[10]Medic J, Atkinson C, Hurburgh C R. Current knowledge in soybean composition[J]. Journal of the American Oil Chemists Society, 2014, 91(3):363-384.
[11]Ringgenberg E. The physico-chemical characterization of soymilk particles and gelation properties of acid-induced soymilk gels, as a function of soymilk protein concentration[D]. Guelph: The University of Guelph, 2011.
[12]袁德保. 大豆蛋白热聚集行为及其机理研究[D]. 广州:华南理工大学, 2010. (Yuan D B. Heat-induced aggregation of soy protein and its mechanism[D]. Guangzhou: South China University of Technology, 2010.)
[13]Sirison J, Matsumiya K, Samoto M, et al. Solubility of soy lipophilic proteins: Comparison with other soy protein fractions[J]. Bioscience Biotechnology and Biochemistry, 2017, 81(4):790-802.
[14]Wu W, Hettiarachchy N S, Kalapathy U, et al. Functional properties and nutritional quality of alkali- and heat-treated soy protein isolate[J]. Journal of Food Quality, 2010, 22(2):119-133.
[15]源博恩. 亚基解离与重聚集对大豆蛋白结构和功能特性的影响[D]. 广州: 华南理工大学, 2012. (Yuan B E. Effect of subunit dissociation and aggregation on structure and properties[D]. Guangzhou: South China University of Technology, 2012.)
[16]郭健. 大豆蛋白热聚集行为控制及其结构表征的研究[D]. 广州: 华南理工大学, 2012. (Guo J. Control of soy protein thermal aggregation behavior and structural characterization of soy protein aggregate[D]. Guangzhou: South China University of Technology, 2012.)
[17]Matsumura Y, Sirison J, Ishi T, et al. Soybean lipophilic proteins: Origin and functional properties as affected by interaction with storage proteins[J]. Current Opinion in Colloid & Interface Science, 2017, 28:120-128.
[18]Renkema J M S. Formation, structure and rheological properties of soy protein gels[J]. Holland: Wageningen Universiteit, 2001.
[19]Chen N, Zhao M, Chassenieux C, et al. Thermal aggregation and gelation of soy globulin at neutral pH[J]. Food Hydrocolloids, 2016, 61:740-746.
[20]Chen N, Chassenieux C, Nicolai T. Kinetics of NaCl induced gelation of soy protein aggregates: Effects of temperature, aggregate size, and protein concentration[J]. Food Hydrocolloids, 2017, 77:66-74.
[21]Chen N, Zhao M, Chassenieux C, et al. The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids, 2017, 70:88-95.
[22]Dobson C M. Protein folding and misfolding[J]. Nature, 2003, 426(6968):884-890.
[23]Sharif H R, Williams P A, Sharif M K, et al. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants-α review[J]. Food Hydrocolloids, 2017, 76:2-16.
[24]Li F, Kong X, Zhang C, et al. Effect of heat treatment on the properties of soy protein-stabilised emulsions[J]. International Journal of Food Science & Technology, 2011, 46(8):1554-1560.
[25]Keeratiurai M, Corredig M. Effect of dynamic high pressure homogenization on the aggregation state of soy protein[J]. Journal of Agricultural & Food Chemistry, 2009, 57(9):3556-3562.
[26]白明昧, 孙泽威, 龙国徽, 等. 热处理对全脂大豆蛋白质分子结构特征、溶解度和体外消化率的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(11):31-38.(Bai M M, Sun Z W, Long G H, et al. Effect of heat-treatment on molecular structure characteristics, solubility and in vitro digestibility of full-fat soybean protein[J]. Journal of Northwest A & F University (Social Science Edition), 2016, 44(11):31-38.)
[27]王中江, 张潇元, 隋晓楠, 等. 热处理大豆蛋白体外消化产物结构特征分析[J]. 食品科学, 2017, 38(1): 20-26. (Wang Z J, Zhang X Y, Sui X N, et al. Structural characteristics of in vitro digestion products of heat-treated soybean protein[J]. Food Science, 2017, 38(1):20-26.)
[28]Chen N, Chassenieux C, Niepceron F, et al. Effect of the pH on thermal aggregation and gelation of soy proteins[J]. Food Hydrocolloids, 2017, 66:27-36.
[29]German B, Damodaran S, Kinsella J E. Thermal dissociation and association behavior of soy proteins[J]. Journal of Agricultural & Food Chemistry, 1982, 30(5): 117-127.
[30]Petruccelli S, Anon M C. Thermal aggregation of soy protein isolates[J]. Journal of Agricultural & Food Chemistry, 1995, 43(12):3035-3041.
〖LL〗[31]Utsumi S, Kinsella J E. Structure-function relationships in food proteins: Subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins[J]. Journal of Agricultural & Food Chemistry, 1985, 33(2):297-303.
[32]叶荣飞, 杨晓泉, 郑田要,等. 热变性和热聚集对大豆分离蛋白溶解性的影响[J]. 食品科学, 2008, 29(7):106-108.(Ye R F, Yang X Q, Zheng T Y, et al. Effects of thermal denaturation and aggregation on solubility of soy protein isolates[J]. Food Science, 2008, 29(7):106-108.)
[33]Jiang J, Xiong Y L, Chen J. pH Shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions[J]. Journal of Agricultural & Food Chemistry, 2010, 58(13):8035-8042.
[34]Andrews J M, Roberts C J. A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1.Aggregation with pre-equilibrated unfolding[J]. Journal of Physical Chemistry B, 2007, 111(27):7897-7913.
[35]He X, Yuan D, Wang J, et al. Thermal aggregation behaviour of soy protein: Characteristics of different polypeptides and sub-units[J]. Journal of the Science of Food & Agriculture, 2015, 96(4):1121-1131.
[36]Kim K S, Kim S, Yang H J, et al. Changes of glycinin conformation due to pH, heat and salt determined by differential scanning calorimetry and circular dichroism[J]. International Journal of Food Science & Technology, 2010, 39(4): 385-393.
[37]Ruiz-Henestrosa V M P, Martinez M J, Patino J M R, et al. A dynamic light scattering study on the complex assembly of glycinin soy globulin in aqueous solutions[J]. Journal of the American Oil Chemists Society, 2012, 89(7):1183-1191.
[38]Nakamura T, Utsumi S, Mori T. Network structure formation in thermally-induced gelation of glycinin[J]. Journal of Agricultural & Food Chemistry, 1984, 32(2):349-352.
[39]Mori T, Nakamura T, Utsumi S. Gelation mechanism of soybean 11S globulin: Formation of soluble aggregates as transient intermediates[J]. Journal of Food Science, 2010, 47(1):26-30.
[40]Xiao J, Shi C, Zhang L, et al. Multilevel structural responses of β-conglycinin and glycinin under acidic or alkaline heat treatment[J]. Food Research International, 2016, 89:540-548.
[41]Tang C H, Wang C S. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin[J]. Journal of Agricultural & Food Chemistry, 2010, 58(20):11058-11066.
[42]Jiang J, Xiong Y L, Chen J. Role of β-conglycinin and glycinin subunits in the pH-shifting-induced structural and physicochemical changes of soy protein isolate[J]. Journal of Food Science, 2011, 76(2):C293-302.
[43]齐宝坤,赵城彬,江连洲, 等. 不同热处理温度下大豆11S球蛋白Zeta电位、粒径和红外光谱研究[J/OL].食品科学, 2017,http://kns.cnki.net/kcms/detail/11.2206.TS.20171227.1327. 044.html. (Qi B K, Zhao C B, Jiang L Z, et al. Research on zeta potential, particle size and infrared spectroscopy of 11S glycinin at different heat treatment temperature[J/OL]. Food Science,2017, http://kns.cnki.net/kcms/detail/11.2206.TS.20171227.1327.044.html.)

Memo

Memo:
-
Last Update: 2019-01-22