|Table of Contents|

The Effect of Different Restorative Treatments on the Diversity of Soybean Rhizobia in the Abandoned Land of Ionic Rare Earth Mine(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年01期
Page:
77-83
Research Field:
Publishing date:

Info

Title:
The Effect of Different Restorative Treatments on the Diversity of Soybean Rhizobia in the Abandoned Land of Ionic Rare Earth Mine
Author(s):
LIU Ming-qian12ZHANG Xin-xin3MA Jia-hui3LI Qi-bin3CHEN Li-jun4ZHOU Wei235MA Ling235CHEN Xiao-yang235
(1.Preparation Office of South China Agricultural Museum, South China Agricultural University, Guangzhou 510642, China; 2.Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou 510642, China; 3.College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; )
Keywords:
Soybean (Glycine max)Ionic rare earth mineRhizobiaDGGEDiversity
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.01.0077
Abstract:
In order to evaluate the effect of different improvement measures on the diversity of rhizobium of soybean (Glycine max) in the abandoned land of ionic rare earth mine, nifH-PCR-DGGE was used to manifestate the diversity of Rhizobia. The results of denaturing gradient gel electrophoresis (DGGE) fingerprint showed that there were differences in the number, the positions and the brightness of bands depended on different restorative treatments, which showed that different soil amendments had a significant effect on the community structure of Rhizobium. The number and diversity index of bands of T4 treatment (fertilizer+biochar+deactivator) were highest, it was best to improve the diversity of rhizobium of soybean. The results of cluster analysis showed that 7 treatments could be divided into four groups, CK was group 1, T1 and T2 were group 2, T4 and T5 were group 3, T3 and T6 were group 4. The combination of biochar and passivator, the combination of bacterial manure and earthworm had the more significant effect on increasing the diversity of rhizobia in root nodules of soybean. According to sequence comparison and phylogenetic tree, soybean is mainly lived in symbiosis with Bradyrhizobium, and also coexisted with Sinorhizobium in the abandoned land of ionic rare earth mine of Meizhou, Guangdong. There was significant positive correlation between the diversity of rhizobium and soil cadmium content, and negative correlation among the diversity of rhizobium and soil organic matter, nitrogen, phosphorus and other nutritional indicators, which suggesting that rhizobium may play an important role in improving the cadmium tolerance of soybean.

References:

[1]马秀丽. 南方稀土矿治理区植物群落特征及其土壤效应[D]. 福州:福建师范大学, 2015: 1-10. (Ma X L. Plant community character and its soil effect in rare earth element mining area of Fujian province, South China[D]. Fuzhou: Fujian Normal University, 2015: 1-10.)
[2]刘文深, 刘畅, 王志威, 等. 离子型稀土矿尾砂地植被恢复障碍因子研究[J]. 土壤学报, 2015, 52(4): 879-887. (Liu W S, Liu C, Wang Z W, et al. Limiting factors for restoration of dumping sites of ionic rare earth mine tailings[J]. Acta Pedologica Sinica, 2015, 52(4): 879-887.)
[3]黄华谷, 黄铁兰, 周兆帅, 等. 广东三个离子吸附型稀土矿的地球化学特征及开采现状[J]. 岩矿测试, 2014, 33(5): 737-746. (Huang H G, Huang T L, Zhou Z S, et al. Mining situation and geochemistry characteristics of three ion adsorption rare-earth deposit in Guangdong province[J]. Rock and Mineral Analysis, 2014, 33(5): 737-746.)
[4]池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6): 641-650. (Chi R A, Tian J. Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(6): 641-650.)
[5]金姝兰,黄益宗. 稀土元素对农田生态系统的影响研究进展[J]. 生态学报, 2013, 33(16): 4836-4845. (Jin S L, Huang Y Z. A review on rare earth elements in farmland ecosystem[J]. Acta Ecologica Sinica, 2013, 33(16): 4836-4845.)
[6]连腾祥. 大豆光合碳在黑土中的转化过程及细菌群落特征[D]. 长春: 中国科学院研究生院(中国科学院东北地理与农业生态研究所), 2016: 53-66. (Lian T X. The turnover of photosynthetic carbon of soybean and relevant bacterial community characteristics in the Mollisols[D]. Changchun: Northeast Institute of geography and Agroecology, Chinese Academy of Sciences, 2016: 53-66.)
[7]陈雪丽, 王玉峰, 李伟群, 等. 黑土区连作大豆根际微生物群落结构的动态变化[J]. 大豆科学, 2018, 37(5): 748-755. (Chen X L, Wang Y F, Li W Q, et al. Dynamic evolution of microbial community in the rhizosphere of continuous cropping of soybean in black soil[J]. Soybean Science, 2018, 37(5):748-755.)
[8]郭慧娟. 大豆快生根瘤菌共生基因的遗传分化及快慢生根瘤菌对土壤微生物的影响比较[D]. 北京: 中国农业大学, 2014: 1-8. (Guo H J. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains and the effect on soil microbial community of Sinorhizobium and Bradyrhizobium[D]. Beijing: China Agricultural University, 2014: 1-8.)
[9]关大伟, 李力, 姜昕, 等. 长期施肥对黑土大豆根瘤菌群体结构和多样性的影响[J]. 生物多样性, 2015, 23(1): 68-78. (Guan D W, Li L, Jiang X, et al. Influence of long-term fertilization on the community structure and diversity of soybean rhizobia in black soil[J]. Biodiversity Science, 2015, 23(1): 68-78.)
[10]Poly F, Monrozier L J, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Research in Microbiology, 2001, 152(1): 95-103.
[11]沈建秀. 接种根瘤菌后刺槐对镉胁迫的响应[D]. 杨凌: 西北农林科技大学, 2017: 16-30. (Shen J X. Response of Robinia pseudoacacia to cadmium stress after inoculation with rhizobium[D]. Yangling: Northwest A&F University, 2017: 16-30.)
[12]Jin Y, Liu H, Luo D, et al. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways[J]. Nature Communications, 2016, 7: 12433.
[13]Zehr J P, Jenkins B D, Short S M, et al. Nitrogenase gene diversity and microbial community structure: A cross-system comparison[J]. Environ Microbiol, 2003, 5(7): 539-554.
[14]唐凤灶. 安徽铜陵铜尾矿原生演替过程中的土壤固氮菌研究[D]. 广州: 中山大学, 2010: 5-30. (Tang F Z. Soil nitrogen-fixing microorganisms in primary succession of copper mine tailings at Tongling, Anhui, China[D]. Guangzhou: Sun Yat-sen University, 2010: 5-30.)
[15]姚钦. 生物炭施用对东北黑土土壤理化性质和微生物多样性的影响[D]. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所), 2017: 21-39. (Yao Q. Effect of biochar addition on soil physicochemical properties and microbial diversity in a black soil of northeast China[D]. Changchun: Northeast Institute of geography and Agroecology, Chinese Academy of Sciences, 2017: 21-39.)
[16]Kolton M, Graber E R, Tsehansky L, et al. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere[J]. New Phytologist, 2017, 213(3): 1393-1404.
[17]唐行灿,陈金林. 生物炭对土壤理化和微生物性质影响研究进展[J]. 生态科学, 2018, 37(1): 192-199. (Tang X C, Chen J L. Review of the effect of biochar on soil physi-chemical and microbial properties[J]. Ecological Science, 2018, 37(1): 192-199.)
[18]何莉莉,杨慧敏,钟哲科,等. 生物炭对农田土壤细菌群落多样性影响的PCR-DGGE分析[J]. 生态学报, 2014, 34(15): 4288-4294. (He L L, Yang H M, Zhong Z K, et al. PCR-DGGE analysis of soil bacterium community diversity in farmlandinfluenced by biochar[J]. Acta Ecologica Sinica, 2014, 34(15): 4288-4294.)
[19]Wu J, Wang J, Zhang X, et al. A gyrB-targeted PCR for rapid identification of Paenibacillus mucilaginosus[J]. Applied Microbiology and Biotechnology, 2010, 87(2): 739-747.
[20]Ma M, Wang Z, Li L, et al. Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer[J]. Journal of Bacteriology, 2012, 194(10): 2777-2778.
[21]李敏. 铅镉污染土壤的稳定化及蚯蚓联合植物修复[D]. 上海: 华东师范大学, 2018: 45-54. (Li M. Stabilization and earthworm-assisted phytoremediation of Pb-Cd contaminated soil[D]. Shanghai: East China Normal University, 2018: 45-54.)
[22]李彦霈,邵明安,王娇. 蚯蚓粪施用方式及用量对土壤入渗的影响[J/OL]. 土壤学报, DOI:10.11766/trxb201807250261. (Li Y P, Shao M A, Wang J. Effects of pattern and amount of earthworm cast application on water infiltration in soil[J/OL]. Acta Pedologica Sinica, DOI:10.11766/trxb201807250261.)
[23]Peix A, Ramirez-Bahena M H, Velazquez E, et al. Bacterial associations with legumes[J]. Critiacal Reviews in Plant Sciences, 2015, 34(1-3SI): 17-42.
[24]Clua J, Roda C, Eugenia Z, et al. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis[J]. Genes, 2018, 9(3): 125.

Memo

Memo:
-
Last Update: 2019-01-22