|Table of Contents|

Effects of High Temperature Stress on Physiological and Biochemical Traits of Soybeans with Different Heat Tolerance(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年01期
Page:
63-71
Research Field:
Publishing date:

Info

Title:
Effects of High Temperature Stress on Physiological and Biochemical Traits of Soybeans with Different Heat Tolerance
Author(s):
JIN Lu-zhen1 WANG Yang2 ZHANG Wei2 XU Jin-yu1 SHEN Zhan-shi1 XIE Fu-ti3
(1.Yanjin Agriculture, Forestry and Livestock Bureau, Xinxiang 453200, China; 2.Jilin Academy of Agricultural Sciences, Changchun 130033, China; 3.Soybean Research Institute of Shenyang Agricultural University, Shenyang 110866, China)
Keywords:
Soybean High temperature stress Heat tolerance Osmotic regulatory substanceAntioxidant enzymesChlorophyllSeed weight per plant
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.01.0063
Abstract:
In order to explore the effects of high temperature stress on different heat-resistant soybean, in this study, different heat-resistant soybean varieties were treated under high temperature stress at different growth stages, and the physiological and biochemical traits of soybean varieties and the correlation between physiological characters and seed weight per plant were studied. The results showed that soluble sugar content, Chl a/b value decreased, MDA content and SOD activity increased with the increase of stress temperature at different growth stages. Under the treatment of 40±2℃ in seedling stage, flowering stage and seed-filling stage, the content of soluble sugar of Changnong 17 decreased by 43.34%, 28.09% and 34.25% respectively, and the content of soluble sugar of of Jinzhou 4-1 decreased by 59.03%, 58.66% and 45.68% respectively. The Chl a/b value under the treatment of 40±2℃ at seeding stage decreased most obviously. The decrease of Chl a/b value of Jinzhou 4-1 (40.55%) exceeded the decrease of Chl a/b value of Changnong 17 (34.40%). The increase of MDA content under the treatment of 40±2℃ at the flowering stage was the highest. The increase of MDA content of Jinzhou 4-1 (135.94%) exceeded the increase of MDA content of Changnong 17 (114.86%). The content of proline in leaves increased with the increase of stress temperature at flowering stage and seed-filling stage, and the most obvious difference between the two varieties under the treatment of 40±2℃was that the proline content increased by 113.84% for Changnong 17 and by 19.61% for Jinzhou 4-1. The activity of POD and ASA content decreased with the increase of stress temperature at seedling stage and flowering stage, and increased at seed filling stage. Grain weight per plant was extremely a significant positive correlation with soluble sugar content and Chl a/b value, and significant negative correlation with MDA content. In conclusion, the soluble sugar content, Chl a/b value and SOD activity of heat-resistant variety Changnong 17 were all higher than those of heat-sensitive variety Jinzhou 4-1, and the MDA content of heat-resistant variety Changnong 17 was lower than that of heat-sensitive variety Jinzhou 4-1. Proline content, ASA content, SOD activity and POD activity of Changnong 17 were still higher than those of Jinzhou 4-1 under the treatment of 35±2℃, 40±2℃. Seed weight per plant of heat-resistant variety Changnong 17 still kept a higher level, and there was a significant difference between the varieties.

References:

[1]秦大河, 罗勇. 全球气候变化的原因和未来变化趋势[J]. 科学对社会的影响, 2008(2):16-21. (Qin D H, Luo Y. The causes and trends of global climate change[J]. Impact of Science on Society, 2008(2):16-21.)
[2]王馥堂, 赵宗慈, 王石力. 气候变化对农业生态的影响[M]. 北京:气象出版社, 2003. (Wang F T, Zhao Z C, Wang S L. The impact of climate change on agricultural ecology[M]. Beijing:China Meteorological Press, 2003.)
[3]Martineau J R, Specht J E. Temperature tolerance in soybeans[J]. Crop Science, 1979,19(1):75-81.
[4]艾青, 牟同敏. 水稻耐热性研究进展[J].湖北农业科学,2008,47(1):107-111. (Ai Q, Mu T M. Research progress of rice heat tolerance[J]. Hubei Agricultural Sciences, 2008,47(1):107-111.)
[5]包刚, 覃志豪, 周义, 等. 气候变化对中国农业生产影响的模拟评价进展[J].中国农学通报, 2012,28(2):303-307. (Bao G, Qin Z H, Zhou Y, et al. Advance of evaluation of climate impact on crop yield[J]. Chinese Agriculture Science Bulletin, 2012,28(2):303-307.)
[6]张桂莲, 陈立云, 张顺堂, 等. 抽穗开花期高温对水稻剑叶理化特性的影响[J]. 中国农业科学,2007,40(7):1345-1352. (Zhang G L, Chen L Y, Zhang S T, et al. Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period[J]. Scientia Agricultura Sinica, 2007,40(7):1345-1352.)
[7]段骅. 高温与干旱对水稻产量和品质的影响及其生理机制[D]. 扬州: 扬州大学, 2013. (Duan H. Effect of high temperature and soil drying on the yield quality and quantity of rice and its physiological mechanism[D].Yangzhou: Yangzhou University, 2013.)
[8]夏天舒, 卞景阳, 谭贺, 等. 垦丰11大豆品种高温胁迫响应研究[J]. 黑龙江农业科学, 2010(12):23-24. (Xia T S, Bian J Y, Tan H, et al. Response to high temperature stress of Kenfeng 11 soybean varieties[J]. Heilongjiang Agricultural Sciences, 2010(12):23-24.)
[9]Amjad H, Madiha G, Nayyer I. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves[J]. Plant Growth Regulation, 2012,31(3):283-291.
[10]陈秀晨, 王士梅, 朱启升, 等. 水稻品种耐热性与相关生化指标的关联分析[J]. 农业环境科学学报, 2010,29(9):1633-1639. (Chen X C, Wang S M, Zhu Q S, et al. Correlation analysis between high temperature resistance and biochemical index among different rice varieties[J]. Journal of Agro-Environment Science, 2010,29(9):1633-1639.)
[11]靳路真, 王洋, 张伟, 等. 大豆品种(系)耐热性鉴定及分级评鉴[J]. 中国油料作物学报, 2016,38(1):77-87. (Jin L Z, Wang Y, Zhang W, et al. Grading evaluation on heat-tolerance in soybean and identification of heat-tolerant cultivars[J]. Chinese Journal Oil Crop Sciences, 2016,38(1):77-87.)
[12]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000.(Li H C. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Advanced Education Press, 2000.)
[13]邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2000. (Zou Q. Experimental instruction in plant physiology[M]. Beijing: China Agricultural Press, 2000.)
[14]李玲. 植物生理学模块实验指导[M]. 北京:科学出版社, 2009. (Li L. Experimental guidance on plant physiology module[M]. Beijing: Science Press, 2009.)
[15]王忠. 植物生理学[M]. 北京:中国农业出版社,2000. (Wang Z. Plant physiology [M]. Beijing: China Agricultural Press, 2000.)
[16]王孝官, 李树德. 冷胁迫对番茄中ABA、可溶性糖和呼吸强度的影响[J]. 园艺学报, 1998,25(1):56-60. (Wang X G, Li S D. Effects of cold stress on ABA, soluble sugar and respiratory intensity in tomato [J]. Acta Horticulturae Sinica, 1998,25(1):56-60.)
[17]刘媛媛, 滕中华, 王三根, 等. 高温胁迫对水稻可溶性糖及膜保护酶的影响研究[J]. 西南大学学报(自然科学版),2008, 30(2):59-63. (Liu Y Y, Teng Z H, Wang S G, et al. Effect of high temperature stress on soluble sugar and membrane protective enzyme in rice [J]. Journal of Southwest University (Natural Science Edition), 2008, 30(2):59-63.)
[18]赵森, 于江辉, 肖国樱. 高温胁迫对爪哇稻剑叶光合特性和渗透调节物质的影响[J]. 生态环境学报,2013,22(1):110-115. (Zhao S, Yu J H, Xiao G Y. Effects of high temperature stress on the photosynthesis and osmoregulation substance of flag leaves in Oryza stavia L.ssp. Javanica[J]. Eclolhy and Environment Sciences, 2013,22(1):110-115.)
[19]全先庆, 张渝洁, 单雷, 等. 高等植物脯氨酸代谢研究进展[J]. 生物技术通讯, 2007(1):14-18. (Quan X Q, Zhang Y J, Shan L, et al. Advances in proline metabolism research of higher pants[J]. Biotechnology Bulletin, 2007(1):14-18.)
[20]陈因, 方大惟. 外源脯氨酸对受NaCl胁迫的蓝藻固氮活性的影响[J]. 植物生理学通讯, 1992,28(4):254-258. (Chen Y, Fang D W. Effects of exogenous proline on nitrogen fixation activity of cyanobacteria subjected to NaCl stress [J]. Plant Physiology Communications, 1992,28(4):254-258.)
[21]沙汉景. 外源脯氨酸对盐胁迫下水稻耐盐性的影响[D]. 哈尔滨: 东北农业大学, 2013. (Sha H J. Effect of exogenous proline on the salt-tolerance of rice [D]. Harbin: Northeast Agricultural University, 2013.)
[22]李珍珍, 韩阳. 抗坏血酸对小麦种子老化及幼苗脂质过氧化的影响[J]. 辽宁大学学报(自然科学版),2000,23(5):56-61. (Li Z Z, Han Y. Effects of ascorbic acid on aging of wheat seeds and lipid peroxidation of seedlings [J]. Journal of Liaoning University (Natural Science Edition), 2000,23(5):56-61.)
[23]姜春明, 尹燕枰, 刘霞, 等. 不同耐热性小麦品种旗叶膜脂过氧化和保护酶活性对花后高温胁迫的响应[J]. 作物学报, 2007,33(11):143-148. (Jiang C M, Yin Y P, Liu X, et al. Response of flag leaf lipid peroxidation and protective enzyme activity of wheat cultivars with different heat tolerance to high temperature stress after anthesis[J]. Acta Agronomica Sinica, 2007,33(11):143-148.)
[24]谢晓金, 李秉柏, 申双和, 等. 高温胁迫对扬稻6号剑叶生理特性的影响[J]. 中国农业气象, 2009,30(1):84-87.(Xie X J, Lin B B, Shen S H, et al. Influence of high temperature stress on some physiological characteristics of flag leaves of rice variety Yangdao 6[J]. Chinese Journal of Agrometeorology, 2009,30(1):84-87.)
[25]卢琼琼, 宋新山, 严登华. 高温胁迫对大豆幼苗生理特性的影响[J]. 河南师范大学学报(自然科学版), 2012,40(1):112-124. (Lu Q Q, Song X S, Yan D H. Effects of high temperature stress on physiological characteristics of soybean seedlings [J]. Journal of Henan Normal University (Natural Science Edition), 2012,40(1):112-124.)
[26]Liu X, Huang B. Heat stress injury in relation to membrane lipid peroxidation in creeping bent grass[J]. Crop Science, 2000,40(2):503-510.
[27]李万成, 朱启升, 王云生, 等. 高温胁迫条件下水稻生理生化指标与产量性状的相关性研究[J]. 中国农学通报, 2013,29(9):5-10. (Li W C, Zhu Q S, Wang Y S, et al. The relationship between physiological and biochemical indexes and the yield characteristics of rice under high temperature stress[J]. Chinese Agricultural Science Bulletin, 2013,29(9):5-10.)
[28]马德华,庞金安,霍振荣, 等. 黄瓜对不同温度逆境的抗性研究[J]. 中国农业科学, 1999,32(5):28-35. (Ma D H. Pang J A, Huo Z R, et al. Research on cucumber resistance to different temperature adversity [J]. Scientia Agricultura Sinica, 1999,32(5):28-35.)

Memo

Memo:
-
Last Update: 2019-01-22