|Table of Contents|

Effects of Melatonin on Seed Germination of Soybean under Low temperature Stress(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年01期
Page:
56-62
Research Field:
Publishing date:

Info

Title:
Effects of Melatonin on Seed Germination of Soybean under Low temperature Stress
Author(s):
YU QiCAO LiangJIN Xi-jun ZOU Jing-nan WANG Meng-xue ZHANG Ming-cong REN Chun-yuan ZHANG Yu-xian
(Agronomy College of Heilongjiang Bayi Agricultural University, Daqing 163319, China)
Keywords:
Low temperature Soybean Melatonin Soaking seeds Germination
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.01.0056
Abstract:
To study the effect of melatonin on soybean germination under low temperature stress, and promoted the application of melatonin in actual production, in this study, Suinong 26 was used as the test variety. Soybean seeds were germinated at room temperature (25°C) for 24 h (T24) and 48 h (T48), then transferred to 4°C for 24 h, then transferred to room temperature to continued germination. At the end of 7 d, the effects of different concentrations of melatonin soaked treatment (0, 50, 100, 200, 400 μmol·L-1) on the germination of soybean seeds were studied. The results showed that 200 μmol·L-1 melatonin soaked treatment significantly increased soybean germination rate compared with melatonin soaking on the third and fourth days under T24 conditions, with an increase of 42% and 29%, respectively. While under the condition of T48, the performance of 100 μmol·L-1 significantly increased the germination rate of soybeans on the 4th and 5th day, respectively, with an increase of 20% and 39%.100 μmol·L-1 treatment significantly increased the germination index and bud fresh weight under the conditions of T24 and T48, the increase rate was 24.6% and 29.6%, 24.7% and 37% respectively. The treatment of 200 and 400 μmol·L-1 could significantly improve soybean bud SOD activity under T24 and T48 conditions increased by 281% and 304%, respectively. Treatment with 100 μmol·L-1 significantly increased CAT, POD, APX activity, proline and soluble protein content under T24 and T48 conditions, increased by 86% and 700%, 138% and 96%, 500% and 200%, 184% and 230%, 70% and 32%, respectively. Soluble sugars content showed the highest treatment at 200 and 400 μmol·L-1 under T24 and T48 conditions, while the MDA content showed the largest decrease at 100 μmol·L-1. According to the analysis of comprehensive germination rate, bud morphology and physiological correlation index, the melatonin concentration of 100~200 μmol·L-1 was the most significant.

References:

[1]佟玉欣, 常本超, 李玉影, 等. 低温冷害致灾机理研究进展及东北抗冷害防控策略[J]. 黑龙江农业科学, 2016(7): 138-142. (Dong Y X, Chang B C, Li Y Y, et al. Research progress on the mechanism of low temperature chilling damage and the strategy of preventing and controlling cold damage in northeast China[J]. Heilongjiang Agricultural Sciences, 2016(7): 138-142.)
[2]桑树鹏. 大豆不同生育期内应对低温冷害措施的研究[J]. 大豆科技, 2013(1): 53-54. (Sang S P. Study on the measures of coping with low temperature and cold damage in different growth stages of soybean[J]. Soybean Technology, 2013(1): 53-54.)
[3]李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015, 48(4):646-660. (Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Scientia Agricultura Sinica, 2015, 48(4): 646-660.)
[4]莫金钢, 马建, 张丽辉, 等. 干旱胁迫对大豆种子萌发的影响[J]. 大豆科学, 2014, 33(5): 701-704. (Mo J G, Ma J, Zhang L H, et al. Effect of drought stress on germination of soybean[J]. Soybean Science, 2014, 33(5): 701-704.)
[5]宋江峰. 低温与精胺对菜用大豆贮藏品质的影响及代谢组学研究[D]. 南京: 南京农业大学, 2014. (Song J F. Effects of low temperature and spermine on storage quality of vegetable soybean and metabolomics study[D]. Nanjing: Nanjing Agricultural University, 2014.)
[6]陈思羽, 刘鹏, 朱末, 等. 大豆植株不同冠层种子活力及其萌发中抗氧化酶活性[J]. 植物学报, 2016, 51(1): 24-30. (Chen S Y, Liu P, Zhu M, et al. Seed vigor and antioxidant enzyme activities during germination in different canopies of soybean[J]. Plant Journal, 2016, 51(1):24-30.)
[7]胡俊杰, 张古文, 胡齐赞, 等. 低温胁迫对菜用大豆生长、叶片活性氧及多胺代谢的影响[J]. 浙江农业学报, 2011, 23(6): 1113-1118. (Hu J J, Zhang G W, Hu Q Z, et al. Effects of chilling stress on growth, metabolism of reactive oxygen species and polyamines in vegetable soybean seedlings[J]. Zhejiang Agricultural Journal, 2011, 23(6): 1113-1118.)
[8]宰学明, 吴国荣. 低温预处理对大豆萌芽活力及其活性氧代谢的影响[J]. 大豆科学, 2001, 20(3): 163-166. (Zai X M, Wu G R. The effects of prechilling on vigour index and active oxygen metabolism of soybean seeds[J]. Soybean Science, 2001, 20(3): 163-166.)
[9]陈立君, 郭强, 刘迎雪, 等. 不同温度对大豆种子萌发影响的研究[J]. 中国农学通报, 2009, 25(10): 140-142. (Chen L J, Guo Q, Liu Y X, et al. Study on the effect of difference temperature to soybean seed germination[J]. Chinese Agricultural Science Bulletin, 2009, 25(10): 140-142.)
[10]张大伟, 杜翔宇, 刘春燕, 等. 低温胁迫对大豆萌发期生理指标的影响[J]. 大豆科学, 2010, 29(2): 228-232. (Zhang D W, Du X Y, Liu C Y, et al. Effect of low temperature stress on physiological indices of soybean at germination stage[J]. Soybean Science, 2010, 29(2): 228-232.)
[11]张贵友, 刘伟华, 戴尧仁. 植物中的褪黑激素及其功能[J]. 中草药, 2003, 34(1): 87-89. (Zhang G Y, Liu W H, Dai Y R. Presence and possible function of melatonin in plants[J]. Chinese Traditional and Herbal Drugs, 2003, 34(1): 87-89.)
[12]左佳琦, 谢佳恒, 薛宇轩, 等. 褪黑素对缓解植物逆境胁迫作用的研究进展[J]. 基因组学与应用生物学, 2014(3): 709-715. (Zuo J Q, Xie J H, Xue Y X, et al. Progress research of melatonin in plant: A multifunctional response to various stress[J]. Genomics and Applied Biology, 2014(3): 709-715.)
[13]Zhang N, Zhao B, Zhang H J, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber [Cucumis sativus (L.)][J]. Journal of Pineal Research, 2012, 54(1): 15-23.
[14]赵振宁, 赵宝勰. 不同大豆品种在萌发期对干旱胁迫的生理响应及抗旱性评价[J]. 干旱地区农业研究, 2018, 36(2): 131-136. (Zhao Z Y, Zhao B X. Physiological response and drought resistance evaluation of different soybean varieties to drought stress at germination stage[J]. Agricultural Research in the Arid Areas, 2018, 36(2): 131-136.)
[15]李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. (Li H S. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000.)
[16]邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000. (Zou Q. Plant physiology experiment guide[M]. Beijing: China Agricultural Press, 2000.)
[17]高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. (Gao J F. Experimental guidance of plant physiology[M]. Beijing: Higher Education Press,2006.)
[18]中国科学院上海植物生理研究所. 现代植物生理学实验指南[M].北京:科学出版社, 1999. (Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Modern plant physiology experiment guide[M]. Beijing:Science Press, 1999.)
[19]王晶英, 敖红, 张杰, 等. 植物生理生化实验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003. (Wang J Y, Ao H, Zhang J, et al. Plant physiology and biochemistry experiment technology and principle[M]. Harbin: Northeast Forestry University Press, 2003.)
[20]李育军, 常汝镇, 赵玉田, 等. 大豆抗冷性研究--Ⅱ、萌发期低温处理对生长发育的影响[J]. 中国油料作物学报, 1989(4): 41-43. (Li Y J, Chang R Z, Zhao Y T, el at. Soybean cold resistance research--Ⅱ、effect of low temperature treatment on growth and development during germination[J]. Chinese Journal of Oil Crop Sciences, 1989(4): 41-43.)
[21]秦文斌, 山溪, 张振超,等. 低温胁迫对甘蓝幼苗抗逆生理指标的影响[J]. 核农学报, 2018, 32(3): 576-581. (Qin W B, Shan X, Zhang Z C, et al. Effects of low temperature stress on stress resistant physiological indexes of cabbage seedlings[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(3): 576-581.)
[22]Tan D X, Manchester L C, Reiter R J, et al. Significance of melatonin in antioxidative defense system: Reactions and products[J]. Biological Signals and Receptor, 2000, 9(3-4): 137-159.
[23]赵静, 梁建生, 吴雪玲, 等. 高盐低温胁迫下水稻叶细胞ROS清除系统的相关基因表达[J]. 西北植物学报, 2015, 35(5): 872-883. (Zhao J, Liang J S, Wu X L, el at. Expression profiling of rice ROS scavenging system related genes under salt or low temperature stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 872-883.)
[24]Zhang N, Sun Q, Zhang H, et al. Roles of melatonin in abiotic stress resistance in plants[J]. Journal of Experimental Botany, 2015, 66(3): 647.
[25]潘红艳. 菘蓝多倍体诱导及外源褪黑素对低温胁迫下菘蓝抗氧化性的影响[D]. 西安: 西北大学, 2013. (Pan H Y. Polyploid induction and effects of exogenous melatonin on antioxidation of isatis indigotica fort under low temperature stress[D]. Xi′an: Northwest University, 2013.)
[26]姜丽娜, 张黛静, 宋飞,等. 不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价[J]. 生态学报, 2014, 34(15):4251-4261. (Jiang L N, Zhang D J, Song F, et al. Physiological response and cold resistance evaluation of different varieties of wheat leaves to jointing low temperature[J]. Acta Ecologica Sinica, 2014, 34(15): 4251-4261.)
[27]翁伯琦, 江福英, 方金梅, 等. 低温胁迫对豆科牧草圆叶决明苗期植株C、N代谢的影响[J]. 草业学报, 2006, 15(6): 64-69. (Weng B Q, Jiang F Y, Fang J M, et al. Effect of chilling stress on carbon and nitrogen metabolism of leguminous Cassia rotundif olia seedlings[J]. Acta Prataculturae Sinica, 2006, 15(6): 64-69.)
[28]程军勇, 郑京津, 窦坦祥, 等. 植物抗寒生理特性综述[J]. 湖北林业科技, 2017, 46(5): 16-20. (Cheng J Y, Zheng J J, Dou T X, et al. Summary of physiological characteristics of plant cold resistance[J]. Hubei Forestry Science and Technology, 2017, 46(5): 16-20.)

Memo

Memo:
-
Last Update: 2019-01-22