|Table of Contents|

Cellulase Production by Mixed Fungi Solid Fermentation and the Application in Soybean Straw Degradation(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年01期
Page:
49-55
Research Field:
Publishing date:

Info

Title:
Cellulase Production by Mixed Fungi Solid Fermentation and the Application in Soybean Straw Degradation
Author(s):
SUN Dong-mei WEN An-yu LI Xiang LIN Zhi-wei XIAO Cui-hong ZHU Li-wei
(Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing 163319, China)
Keywords:
Trichoderma aureovirideChaetomium cupreumTrichoderma virideCellulaseMixed fungi Soybean StrawDegradation
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.01.0049
Abstract:
In order to improve the decomposition efficiency of straw returning to field and reduce the diseases aggravation, antagonistic fungi Trichoderma aureoviride, Chaetomium cupreum and cellulose-decomposing fungus T. viride were used to study the cellulase production ability of different strains in mixed culture and its effect on the degradation rate of cellulose and hemicellulose from soybean straw. The results showed that the cellulase activity, cotton enzyme activity and carboxymethyl cellulase activity of three different strains and mixed fermentation at different fermentation time were measured on rice straw and bran as basic medium. The cellulase activity of these three strains mixed fermentaton was the strongest. The cellulase activity was 385.12, 454.30 and 495.12 U, respectively. The changes of cellulose and hemicellulose contents before and after fermentation showed that there were significant differences between the two treatments, and the degradation rates of cellulose and hemicellulose were 66% and 76% respectively. We also found that the degradation rate of soybean straw was the highest when the length of soybean straw was 3 cm and the buried depth was 10 cm by the burying experiment. The degradation rate of soybean straw was increased by more than 50%, the strength of soybean straw was reduced by about 5 times and the puncture force was decreased by adding mixed microbial agent. The results showed that the three strains mixed could be used in the degradation of soybean straw, which could provide effective microbial resources for decomposition of soybean straw.

References:

[1]宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1-21. (Song D L, Hou S P, Wang X B, et al. Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21.)
[2]李逢雨, 孙锡发, 冯文强, 等. 麦秆、油菜秆还田腐解速率及养分释放规律研究[J]. 植物营养与肥料学报, 2009, 15(2): 374-380. (Li F Y, Sun X F, Feng W Q, et al. Nutrient release patterns and decomposing rates of wheat and rapeseed straw[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 374-380.)
[3]唐萍. 秸秆综合利用方案评价-以肥东县为例[D]. 合肥: 合肥工业大学,2010. (Tang P. Evaluation of mroposals of straws comprehensive utilization: For example of county of Feidong[D]. Hefei: Hefei University of Technology, 2010.)
[4]花莉, 张成, 马宏瑞, 等. 秸秆生物质炭土地利用的环境效益研究[J]. 生态环境学报, 2010, 19(10): 2489-2492. (Hua L, Zhang C, Ma H R, et al. Environmental benefits of biochar made by agricultural straw when applied to soil[J]. Ecology and Environmental Sciences, 2010, 19(10): 2489-2492.)
[5]曹志宏, 黄艳丽, 郝晋珉. 中国作物秸秆资源利用潜力的多适宜性综合评价[J]. 环境科学研究, 2018, 31(1) : 179-186. (Cao Z H, Huang Y L, Hao J M. Multi-suitability comprehensive evaluation of crop straw resource utilization in China[J]. Research of Environmental Sciences, 2018, 31(1) : 179-186.)
[6]Madari B, Machado P L O A, Torres E, et al. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil[J]. Soil and Tillage Research, 2005, 80(1-2): 185-200.
[7]Zhang Y H P,Himmel M E,Mielenz J R. Outlook for cellulase improvement: Screening and selection strategies[J]. Biotechnology Advances, 2006, 24(5): 452.
[8]Abdulla H M,EI-Shatoury S A.Actinomycetes in rice straw decomposition[J]. Waste Management, 2007, 27(6) : 850-853.
[9]Ma H,Liu W W,Liu P,et al. Enhanced enzymatic saccharification of rice straw by microwave pretreatment[J]. Bioresource Technology, 2009, 100(3): 1279-1284.
[10]Lundell T K,Mkel M R,Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes: Ecological, functional and phylogenetic review[J]. Journal of Basic Microbiology, 2010, 50: 5-20.
[11]Fang X, Qin Y Q, Li X Z, et al. Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass[J]. Biotechnology, 2010, 26(7): 864-869.
[12]张国秀. 里氏木霉纤维酶高产菌株遗传改造及新型糖苷水解酶的挖掘[D]. 上海:华东理工大学, 2017. (Zhang G X. Genetic modification of trichoderma reesei Hyper-cellulolytic mutant and mining for new glycoside hydrolases[D]. Shanghai: East China University of Science and Technology, 2017.)
[13]李洪林, 刘凤艳, 龚振平, 等. 稻杆还田对水稻主要病害发生的影响[J]. 作物研究, 2012, 26(1) : 7-10. (Li H L, Liu F Y, Gong Z P, et al. Effect of straw return back to paddy field on occurence of rice major disease[J]. Crop Research, 2012, 26(1) : 7-10.)
[14]张雪松, 曹永胜, 曹克强. 保护性耕作与小麦主要土传病害问题和治理对策[J]. 西北农林科技大学学报, 2005, 33(S1): 47-48. (Zhang X S, Cao Y S, Cao K Q. Management of wheat soil-borne diseases under the conservative farming system[J]. Journal of Northwest Science and Technology University of Agricultural and Forestry (Natural Science Edition) , 2005, 33(S1) : 47-48.)
[15]孙秀娟. 稻秆集中掩埋还田对赤霉病菌(Fusarium graminearum Sehw)和二化頓(Chilo suppressalis Walker)幼虫存活的影响[D]. 南京:南京农业大学, 2012.(Sun X J. Effects of straw centralize-buried in soil on suevtval dynamics of phytoalexin (Fusarium graminearum Sehw) and stem-borer(Chilo suppressalis Walker) larvae[D]. Nanjing: Nanjing Agricultural University, 2012.)
[16]方诩, 秦玉琪, 李雪芝, 等. 纤维素酶与木质纤维素生物降解转化的研究进展[J]. 生物工程学报, 2010, 26(7): 864-869.(Fang X, Qin Y Q, Li X Z, et al. Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass[J]. Chinese Journal of Biotechnology, 2010, 26(7): 864-869.)
[17]孙美娜, 张凡凡, 王永强, 等. 棉花秸秆纤维素降解菌的筛选鉴定与降解棉秆效果研究[J]. 新疆农业科学, 2018, 55(1): 16-23. (Sun M N, Zhang F F, Wang Y Q, et al. Screening and identification of cellulolytic srains from cotton straw and its effect on degradation of cotton stalk[J]. Xinjiang Agricultural Sciences, 2018, 55(1): 16- 23.)
[18]Baldrian P, Valof P. Degradation of cellulose by basidiomycetous fungi[J]. FEMS Microbiology Reviews, 2008, 32(3): 501-502.
[19]Adsul M, Bastawde K, Varma A, et al. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulose production[J]. Bioresource Technol, 2007, 98(7): 1467-1473.
[20]方星星. 里氏木霉与黑曲霉混合发酵产纤维素酶的研究[D]. 合肥:合肥工业大学, 2012. (Fang X X. Study on cellulase production by mixed fermentation of Trichoderma ressei and Aspergillus niger[D]. HeFei: Hefei University of Technology, 2012.)
[21]孙冬梅, 杨谦, 宋金柱, 等. 黄绿木霉固定化生产纤维素酶及酶学特性的研究[J]. 林产化学与工业, 2006, 26(2): 79-82.(Sun D M ,Yang Q, Song J Z, et al. Studies on cellulase production by immobilized cells and characteristics of cellulase[J]. Chemistry and Industry of Forest Products, 2006, 26(2): 79-82.)
[22]孙冬梅, 杨谦, 张军政. 黄绿木霉诱变菌株对大豆根腐病镰刀菌的拮抗[J]. 大豆科学,2005, 24(3): 171-175.(Sun D M, Yang Q, Zhang J Z. Antagonism of Trichoderma aureoviride mutant strain aganist Fusarium spp. the pathogen of soybean root rot[J]. Soybean Science, 2005, 24(3): 171-175.)
[23]孙冬梅, 杨谦, 宋金柱. 黄绿木霉菌对大豆根腐病镰刀菌的拮抗作用[J]. 中国油料作物学报, 2005, 27(3): 59-63. (Sun D M, Yang Q, Song J Z. Antagonism of Trichoderma aureoviride against Fusarium spp which causes soybean root rot[J]. Chinese Journal of Oil Crop Sciences, 2005, 27(3): 59-63.)
[24]张海燕, 杨谦. 角毛壳菌产纤维素酶条件的研究[J]. 河南工业大学学报(自然科学版),2006, 27(4): 15-18. (Zhang H Y,Yang Q. Study on cellulase ferment production of Chaetomium cupreum[J]. Journal of Henan University of Technology(Natural Science Edition) , 2006, 27(4): 15-18.)
[25]张海燕, 杨谦. 角毛壳菌生物防治相关基因的筛选[J]. 中国生物防治, 2007,23(2): 191-194. (Zhang H Y,Yang Q. Selection of biocontrol-related genes from Chaetomium cupreum[J]. Chinese Journal of Biological Control, 2007, 23(2): 191- 194.)        
[26]Lan T Q , Wei D, Yang S T, et al. Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor[J].Bioresource Technology, 2013, 133: 175-182.
[27]唐国涛, 邢沙沙, 黄榕彬, 等. 脂麻秆中纤维素与半纤维素的含量测定[J]. 作物研究, 2012, 26 (1): 53-55. (Tang G T, Xing S S, Huang R B, et al. Determination of content of cellulose and hemicellulose in stem of Sesamum indicum [J]. Crop Research, 2012, 26(1): 53-55.)
[28]杨腾腾, 周宏, 王霞, 等. 微生物降解纤维素的新机制[J]. 微生物学通报, 2015, 42(5): 928-935.(Yang T T, Zhou H, Wang X, et al. A new microbial strategy for cellulose degradation[J]. Microbiology China, 2015, 42(5): 928-935.)
[29]Beguin P, Aubert J P. The biological degradation of cellulose[J]. FEMS Microbiology Reviews, 1994, 13(1): 25-58.
[30]Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues, opportunities & perspectives[J]. International Journal of Biological Sciences, 2009, 5(6): 578-595.
[31]石娜娜, 顾颖慧, 郑颖, 等. 大豆秸秆纤维素降解菌的筛选及鉴定[J]. 农技服务, 2016, 33(1): 95-81. (Shi N N, Gu Y H, Zheng Y, et al. Screening and identification of cellulose degrading strains of soybean straw[J]. Agricultural Service, 2016, 33(1): 95-81.)

Memo

Memo:
-
Last Update: 2019-01-22