|Table of Contents|

Effect of nodVW Genes on Symbiotic Nitrogen Fixation of Sinorhizobium fredii HH103(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年06期
Page:
871-875
Research Field:
Publishing date:

Info

Title:
Effect of nodVW Genes on Symbiotic Nitrogen Fixation of Sinorhizobium fredii HH103
Author(s):
AN Qi12 WU Hao-qiong12 YIN Bo12 YUAN Tao12 YUAN Ming3 CAO Ya-bin12 NIU Yan-bo12 MA Yin-peng1
(1.Institute of Microbiology,Heilongjiang Academy of Sciences,Harbin 150010,China; 2.Institute of Advanced Technology,Heilongjiang Academy of Sciences,Harbin 150020,China; 3.Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences,Qiqihar 161006,China)
Keywords:
Two component regulatory system nodVW Recombinant rhizobium Nodulation and nitrogen fixation
PACS:
-
DOI:
1011861/jissn1000-98412018060871
Abstract:
In this study, Bradyrhizobium japonicum USDA110 was used as the starting strain The two component regulatory genes nodVW from Bradyrhizobium japonicum USDA110 were amplified and introduced to Sinorhizobium fredii HH103 and HH103 nodD1 mutant strains in order to study the effect of nodVW on symbiotic nitrogen fixation of the recombinant strains to soybean genotype NF-16 The results showed that the introduction of the two-component control system NodVW from Bradyrhizobium japonicum USDA110 exert negative effect on soybean plants, which significantly reduced the height and fresh weight of soybean plants In the meanwhile, the number of nodules at soybean roots decreased significantly The results indicated that the introduction of NodVW hindered the pathway and inhibits the nodulation and nitrogen fixation of Sinorhizobium fredii HH103 accordingly

References:


[1]李欣欣, 许锐能, 廖红 大豆共生固氮在农业减肥增效中的贡献及应用潜力[J]. 大豆科学, 2016, 35(4): 532-534 (Li X X, Xu R N, Liao H Contributions of symbiotic nitrogen fixation in soybean to reducing fertilization while increasing efficiency in agriculture[J]. Soybean Science, 2016, 35(4): 532-534)
[2]蒲艳艳, 宫永超, 李娜娜, 等 中国大豆种质资源遗传多样性研究进展[J]. 大豆科学, 2018, 3(37): 315-318 (Pu Y Y,Gong Y C,Li N N, et al. The progress in genetic diversity of the soybean germplasm in China[J]. Soybean Science, 2018, 3(37): 315-318)
[3]赵叶舟, 王浩铭, 汪自强 豆科植物和根瘤菌在生态环境中的地位和作用[J]. 农业环境与发展, 2013, 30(4):7-12 (Zhao Y Z, Wang H M, Wang Z Q The role of leguminous plants and rhizobium in ecological environment[J]. Agro-Environment & Development, 2013, 30 (4): 7-12)
[4]Sachs J L, Russell J E, Hollowell A C Evolutionary instability of symbiotic function in Bradyrhizobium japonicum[J]. PLoS One, 2011, 6(11): 2637-2640
[5]Takakazu K, Nakamura Y, Sato S, et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110[J]. DNA Research, 2002, 9, 189-197
[6]缪礼鸿,周俊初费氏中华根瘤菌内源质粒的不相容性及其在质粒消除中的应[J]. 微生物学报, 2001, 41(4): 433-435 (Miao L H, Zhou J C Incompatibility among indigenous plasmids of Sinorhizobium fredii strains and its application for plasmid curing[J]. Acta Microbiologica Sinica, 2001, 41(4): 433-435)
[7]张武, 杨琳, 王紫娟 生物固氮的研究进展及发展趋势[J]. 云南农业大学学报, 2015, 30(5): 810-821 (Zhang W, Yang L, Wang Z J Advance and development trend of biological nitrogen fixation research[J]. Journal of Yunnan Agricultural University, 2015, 30(5): 810-821)
[8]陈文峰根瘤菌系统学研究进展与展望[J]. 微生物学通报, 2016, 43(5): 1095-1100 (Chen W F Progress and perspective of systematics of rhizobia[J].Microbiology China, 2016, 43(5): 1095-1100)
[9]苗淑杰,刘晓冰大豆根瘤固氮的分子生理研究[J].大豆科学,2010,29(2):319-324. (Miao S J, Liu X B Molecular physiology of nodulation and nitrogen fixation in soybean[J]. Soybean Science, 2010, 29(2): 319-324)
[10]Lamrabety Y, Bellog A, Cubo T, et al. Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans[J]. Molecular Plant-Microbe Interact, 2009, 12(3): 207-217.
[11]Chou M X, Wei X Y Review of research advancements on the molecular basis and regulation of symbiotic nodulation of legumes[J]. Chinese Journal of Plant Ecology, 2010, 34(7): 876-888
[12]Michael U, Philip S Transport and metabolism in legume-rhizobia symbioses [J]. Annual Review of Plant Biology, 2013, 4(18):1560-1566
[13]Loh J, Gary S Feedback regulation of the Bradyrhizobium japonicum nodulation genes[J].Molecular Microbiology, 2001, 41(6):1357-1364
[14]Gttfert M, Holzhauser D, Hennecke H Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110[J]. Molecular Plant Microbe Interact, 1992, 5(3): 257-265
[15]Sachs J L, Russell J E, Hollowell A C Evolutionary instability of symbiotic function in Bradyrhizobium japonicum[J]. PLoS One, 2011, 6(11): 2637-2640
[16]Gttfert M, Grob P, Hennecke H Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(7): 2680-2684
[17]Loh J, Garcia M, Stacey G NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum[J]. Journal of Bacteriol, 1997, 179(9): 3013-3020
[18]Loh J, Dasharath P, Andersen B, et al. A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes[J]. 2002, 184(6):1759-1766
[19]Takakazu K, Nakamura Y, Sato S, et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110[J]. DNA Research, 2002, 9(6), 189-197
[20]Fisher R F, Long S R Rhizobium-plant signal exchange[J]. Nature, 1992, 357(6380): 655-660
[21]Huang Y The strategies and application of bacterial gene mutation[J]. Microbiology Bulletin, 2007, 34(1): 169-172

Memo

Memo:
-
Last Update: 2018-12-04