|Table of Contents|

黑龙江省抗胞囊线虫大豆的分子遗传和相关基因挖掘(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年06期
Page:
839-842
Research Field:
Publishing date:

Info

Title:
黑龙江省抗胞囊线虫大豆的分子遗传和相关基因挖掘
Author(s):
(1.南京农业大学 大豆研究所/农业部大豆生物学与遗传育种重点实验室/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏 南京 210095; 2.黑龙江省农业科学院 大豆研究所,黑龙江 哈尔滨 150086)
Keywords:
抗胞囊线虫大豆等位变异遗传贡献黑龙江
PACS:
-
DOI:
1011861/jissn1000-98412018060843
Abstract:
大豆胞囊线虫是世界大豆生产的一种毁灭性病原,为解析抗胞囊线虫大豆种质的分子遗传特征,挖掘相关基因,采用田间试验、接种鉴定和SLAF-seg技术相结合的方法,对黑龙江省主推的抗线虫品种的遗传性状和基因组遗传特性进行解析,并应用关联分析方法确立抗胞囊线虫3号小种的相关基因位点。研究结果表明:抗线品种的抗原来源于Fliklin和Peking小黑豆;抗线2、抗线6、抗线10的遗传距离较近,品种间的遗传距离为024和0213,抗线2与丰豆3的遗传距离为0799,亲缘关系较远抗线2号及其抗线品种的进化SNP位点有105 563个,而品种间遗传保守位点4 352个,占进化标记位点的412%;品种间相同等位变异在不同品种和不同染色体上存在差异;相同等位变异为56%~963%;抗线2对抗线4和抗线6的遗传贡献表现在不同染色体上的遗传信息传递在65%以上,在4号染色体上,抗线2与抗线4、抗线6比较的相同等位变异比例达95%以上,在10号染色体上相同等位变异比例超过91%,推测抗线虫大豆在4、10号染色体上有一些特殊与主要农艺性状、胞囊线虫抗性、疫霉菌抗性、抗旱性、病毒病1号抗性、根系形态、脐色、百粒重等相关基因位点的遗传成为黑龙江省西部地区抗线大豆的生态遗传基础。在11号染色体上找到了抗胞囊线虫3号小种的关联位点4个,其中Glyma11g 357001的增效作用较大,可用于大豆育种的分子标记辅助选择。

References:

[1]Ma S J, Zhang Y H, Xue Q X, et al. Evaluation of resistance of Chinese soybean germplasms to race 3 of soybean cyst nematode[J]. Soybean Science, 1996, 15(2): 97-102
[2]Dong L H, Zhang Z F, Hao K, et al. Screening of early-mature and high-protein soybean varieties with resistance to races 1 and 4 of soybean cyst nematode[J]. Soybean Science, 1998, 17 (1): 91-96
[3]Kong X C, Li H M, Geng T, et al. Identification of the resistance of soybean germplasms to races 3 and 4 of soybean cyst nematode [J]. Plant Protection, 2012, 38(1): 146-150
[4]Wang J Q Genetic analysis, SSR and ISSR markers on the genes related to the resistance to race 4 of soybean cyst nematode[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006
[5]Meng X, Liu X Y, Fang X J QTL mapping genes conferring resistance to race 4 of soybean cyst nematode in soybean ZDD2315 [Glycine max (L) Merr] based on public molecular genetic linkage map[J]. Molecular Plant Breeding, 2003, 1(1): 6-21
[6]Yuan C P, Chang R Z, Qiu L J, et al. Progress on genetic mapping and gene cloning of cyst nematode resistance in soybean[J]. Chinese Bulletin of Botany, 2006, 23(1): 14-22
[7]Sun M H, Li X Z, Miu Z Q, et al. Advances in biological control of cyst nematode in soybean [J]. Chinese Journal of Biological Control, 2000, 16: 136-141
[8]Liu D W, Duan Y X, Chen Y J, et al. Study on biochemical mechanism of Huipizhiheidou resistance to race 3 of soybean cyst nematode[J]. Acta Agriculturae Boreali-Sinica, 2009, 24 (1): 165-168
[9]Concibido V C, Dicrs B W, Arelli P R A decade of QTL mapping for Cyst nematode resistance in soybean[J]. Crop Science, 2004, 44: 1121-1131
[10]Cao Y, Li S, He X, et al. Mapping QTLs for plant height and flowering time in a Chinese summer planting soybean RIL population[J]. Euphytica, 2017, 213: 39
[11]Li B, Fang S, Yu F, et al. High-resolution mapping of QTL for fatty acid composition in soybean using specifc-locus amplifed fragment sequencing[J]. Theoretical and Applied Genetics, 2017; 130(7): 1467-1479
[12]Lin H, Liu L J,Wu J J, et al. Effects of different cultivation patterns on assimilate accumulation, photosynthetic characteristics and yield formation in soybean[J]. Soybean Science, 2009, 28(1): 456-460
[13]Wu J J, Ma F M, Lin H, et al. Assimilate accumulation, photosynthetic characteristics and yield of soybean genotypes with different phosphorus efficiency[J]. Soybean Science, 2010, 29 (2): 247-250
[14]Ma S Methods on resistance identification of three main soybean diseases in Heilongjiang province [J]. Soybean Science, 2007, 26 (5): 744-747
[15]Schmutz J, Canon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean [J]. Nature, 2010, 463 (7278): 178-18
[16]Li R, Yu C, Lam T W, et al. SOAP2: An improved ultrafast tool for short read alignment[J]. Bioinformatics, 2009, 25(15): 1966-1967
[17]Barret J C, Fry B, Maller J, et al. Haploview: Analysis and visualization of LD and haplotype maps [J]. Bioinformatics, 2005, 21(2): 263-265
[18]The International Hap Map Consortium A haplotype map of the human genome[J]. Nature, 2005, 437: 1299-1320
[19]Tamara K, Peterson D, Peterson N, et al. MEGAS: Molecular evolutionary genetics analysis using maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739
[20]Saiton N, Nei M The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4: 406-425
[21]Tamara K, Nei M, Kumar S Prospects for inferring very large phylogenies by using the neighbor-joining method [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11030-11035
[22]Tamara K, Peterson D, Peterson N, et al. MEGAS: Molecular evolutionary genetics analysis using maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28 (10): 2731-2739
[23]Turlapati P V, Kim K W, Davin L B, et al. The laccase multigene family in Arabidopsis thaliana towards addressing the mystery of their gene function(s)[J]. Planta, 2011, 233(3): 439-70
[24]Chang W, Han Y P, Hu H B, et al. Mining candidate genes for resistance to soybean cyst nematode based on meta-analysis and domains annotations[J]. Scientia Agricaltura Sinica, 2010, 43(23): 4787-4795
[25]Zhang S S, Li Y H, Li J Y, et al. Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode[J]. Acta Agronomica Simca, 2013, 39 (10): 1746-1753

Memo

Memo:
-
Last Update: 2018-12-04