|Table of Contents|

Research Advances of Agrobacterium-mediated Transformation Affecting Factors in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年05期
Page:
803-806
Research Field:
Publishing date:

Info

Title:
Research Advances of Agrobacterium-mediated Transformation Affecting Factors in Soybean
Author(s):
YANG Liu YU Cui-mei LIU Ming ZHAO Ming-zhe XIE Fu-ti
(Agronomy college of Shenyang Agrocultural University, Shenyang 110866, China)
Keywords:
Soybean Agrobacterium Transformation Affecting factors
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2018.05.0803
Abstract:
There is an urgent need to establish a high-efficiency transformation system for soybean genetic engineering breeding and functional genome analysis.This article summarized research advances of affecting factors including Agrobacterium factors,plants factors and culture conditions that affect Agrobacterium tumefaciens mediated transformation rencent years,mainly about Agrobacterium strains,bacterial growth state,soybean genotypes,explant types, defense enzymes, endogenous hormones and the condition of infection and co-culture. It will would provide reference for correlational studies of improving soybean transformation efficiency and genetic engineering breeding.

References:

[1]Hartman G L, West E D, Herman T K. Crops that feed the world 2.Soybean-worldwide production, use, and constraints caused by pathogens and pests[J]. Food Security, 2011, 3(1): 5-17.
[2]Lam H M, Xu X, Liu X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42(12): 1053-1059.
[3]Olhoft P M, Donovan C M, Somers D A. Soybean (Glycine max) transformation using mature cotyledonary node explants[J]. Methods in Molecular Biology, 2006, 343: 385-396.
[4]Yamada T, Takagi K, Ishimoto M. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis[J]. Breeding Science, 2012, 61(5): 480-494.
[5]侯文胜, 林抗雪, 陈普, 等. 大豆规模化转基因技术体系的构建及其应用[J]. 中国农业科学, 2014, 47(21): 4198-4210. (Hou W S, Lin K X, Chen P, et al. Establishment and prospect of efficient transformation systems for soybean[J]. Scientia Agricultura Sinica, 2014, 47(21): 4198-4210.)
[6]Olhoft P M, Flagel L E, Donovan C M, et al. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method[J]. Planta, 2003, 216(5): 723-735.
[7]Paz M M, Shou H, Guo Z, et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant[J]. Euphytica, 2004, 136(2): 167-179.
[8]Paz M, Martinez J A, Fonger T, et al. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation[J]. Plant Cell Reports, 2006, 25(3): 206-213.
[9]Yamada T, Watanabe S, Arai M, et al. Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean[J]. Plant Tissue Culture Letters, 2010, 27(2): 217-220.
[10]Zhang F, Chen C, Ge H, et al. Efficient soybean regeneration and Agrobacterium-mediated transformation using a whole cotyledonary node as an explant[J]. Biotechnology and Applied Biochemistry, 2014, 61(5): 620-625.
[11]Arun M, Subramanyam K, Mariashibu T S, et al. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars[J]. Applied Biochemistry and Biotechnology, 2015, 175(4): 2266-2287.
[12]Yang X F, Yu X Q, Zhou Z, et al. A high-efficiency Agrobacterium tumefaciens, mediated transformation system using cotyledonary node as explants in soybean (Glycine max L.)[J]. Acta Physiologiae Plantarum, 2016, 38(3): 1-10.
[13]Gelvin S B.Agrobacterium-mediated plant transformation: The biology behind the ‘gene-jockeying’ tool[J]. Microbiology and Molecular Biology Reviews Mmbr, 2003, 67(1): 16-37.
[14]Hinchee M A W, Connorward D V, Newell C A, et al. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer[J]. Nature Biotechnology, 1988, 6(6): 915-922.
[15]Meurer C A, Dinkins R D, Collins G B. Factors affecting soybean cotyledonary node transformation[J]. Plant Cell Reports, 1998, 18(3-4): 180-186.
[16]王凤敏, 李涛, 王运杰, 等. 影响农杆菌介导大豆子叶节遗传转化因素的研究[J]. 大豆科学, 2011, 30(4): 557-562. (Wang F M, Li T, Wang Y J, et al. Assessment of factors affecting soybean cotyledonary-node Agrobacterium-mediated genetic transformation[J]. Soybean Science, 2011, 30(4): 557-562.)
[17]薄路花, 曹越平. 不同大豆品种对农杆菌EHA105和GV3101敏感性及共培养条件的优化[J]. 上海交通大学学报(农业科学版), 2015, 33(1): 26-31. (Bo L H, Cao Y P. Sensitivity of different soybean genotype to Agrobacterium EHA105 and GV3101 and optimization of cocultivation conditions[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2015, 33(1): 26-31.)
[18]Lacroix B, Tzfira T, Vainstein A, et al. A case of promiscuity: Agrobacterium′s endless hunt for new partners[J]. Trends in Genetics Tig, 2006, 22(1): 29-37.
[19]Gelvin S B. Traversing the cell:Agrobacterium T-DNA′s journey to the host genome[J]. Frontiers in Plant Science, 2012, 4(1): 27-32.
[20]邹智.农杆菌vir基因诱导因子研究进展[J].中国生物工程杂志,2011,31(7):126-132.(Zou Z.Advances on factors influencing induction of Agrobacterium tumefaciens virulence genes[J].China Biotechnology,2011,31(7):126-132.)
[21]Zhang Y M, Zhang H M, Liu Z H, et al. Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant-Agrobacterium tumefaciens interaction[J]. Plant Cell Tissue and Organ Culture, 2015, 121(1): 1-11.
[22]Zhang Y M, Liu Z H, Yang R J, et al. Improvement of soybean transformation via Agrobacterium tumefaciens, methods involving α-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis[J]. Plant Cell Reports, 2016, 35(6): 1259-1271.
[23]Arun M, Chinnathambi A, Subramanyam K, et al. Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean[J]. Biotech, 2016 6(2): 148:1-12.
[24]赵晓雯,吴芳芳,狄少康,等. 农杆菌介导的大豆子叶节遗传转化技术流程及操作要点[J].大豆科学, 2011, 30(3): 362-368. (Zhao X W,Wu F F,Di S K, et al. Technique flow and key operation points of Agrobacterium- mediated genetic transformation of soybean cotyledonary node[J].Soybean Science,2011, 30(3): 362-368.)
[25]吴国栋, 修宇,王华芳. 优化子叶节转化法培育大豆Mt DREB2A转基因植株.植物学报[J], 2018, 53 (1): 59-71.(Wu G D, Xiu Y, Wang H F. Breeding of Mt DREB2A transgenic soybean by an optimized cotyledonary-node method[J]. Chinese Bulletin of Botany,2018, 53 (1): 59-71.)
[26]Li S X, Cong Y H, Liu Y P,et al. Optimization of Agrobacterium-mediated transformation in soybean[J]. Frontiers in Plant Science,2017,8:1-15.
[27]贾钰莹, 蒋滢, 赵强, 等. 农杆菌介导超高产大豆子叶节遗传转化研究[J]. 大豆科学, 2014, 33(5): 634-637. (Jia Y Y, Jiang Y, Zhao Q, et al. Study on Agrobacterium-mediated transformation system of super-high-yielding soybean cotyledon node[J]. Soybean Science, 2014, 33(5): 634-637.)
[28]Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria[J]. Microbiology and Molecular Biology Reviews, 2005, 69(1): 155-194.
[29]Gelvin S B. Integration of Agrobacterium T-DNA into the plant genome[J]. Annual Review of Genetics, 2017, 40(1): 195-217.
[30]Ziemienowicz A.Agrobacterium-mediated plant transformation: Factors, applications and recent advances[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(4): 95-102.
[31]Huang F C, Fu B J, Liu Y T, et al. Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 participate in Agrobacterium-mediated plant transformation[J]. International Journal of Molecular Sciences, 2018, 19(3): 638-659.
[32]Bourras S, Rouxel T, Meyer M.Agrobacterium tumefaciens gene transfer: How a plant pathogen hacks the nuclei of plant and nonplant organisms[J]. Phytopathology, 2015, 105(10): 1288-1301.
[33]Garcíacano E, Hak H, Magori S, et al. The Agrobacterium F-box protein effector VirF destabilizes the Arabidopsis GLABROUS1 enhancer/binding protein-like transcription factor VFP4, a transcriptional activator of defense response genes[J]. Molecular Plant-Microbe Interactions, 2018, DOI: 10.1094/MPMI-07-17-0188-FI.
[34]Donaldson P A, Simmonds D H. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean[J]. Plant Cell Reports, 2000, 19(5): 478-484.
[35]王罡, 王萍, 蔺宇, 等. 大豆基因型对根癌农杆菌菌株敏感性的研究[J]. 遗传, 2002, 24(3): 297-300. (Wang G, Wang P, Lin Y, et al. The studies of sensitivity of genotype in soybean to lines of Agrobacterium tumefaciens[J]. Hereditas, 2002, 24(3): 297-300.)
[36]李文霞, 宁海龙, 吕文河, 等. 农杆菌介导大豆子叶节转化系统的优化[J]. 中国农业科学, 2008, 41(4): 971-977. (Li W X, Ning H L, Lyu W H, et al. Optimization of the Agrobacterium-mediated transformation systems of soybean cotyledonary node[J]. Scientia Agricultura Sinica, 2008, 41(4): 971-977.)
[37]Song Z Y, Tian J L, Fu W Z, et al. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability[J]. Journal of Zhejiang University-Science B(Biomedicine and Biotechnology), 2013, 14: 289-298.
[38]Jia Y Y, Yao X D, Zhao M Z, et al. Comparison of soybean transformation efficiency and plant factors affecting transformation during the Agrobacterium infection process[J]. International Journal of Molecular Sciences, 2015, 16(8): 18522-18543.
[39]Parrott W A, Williams E G, Hildebrand D F, et al. Effect of genotype on somatic embyrogenesis from immature cotyledons of soybean[J]. Plant Cell Tissue and Organ Culture, 1989, 16(1): 15-21.
[40]Trick H N, Finer J J. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue[J]. Plant Cell Reports, 1998, 17(6-7): 482-488.
[41]Liu H K, Yang C, Wei Z M. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system[J]. Planta, 2004, 219(6): 1042-1049.
[42]Hong H P, Zhang H, Olhoft P, et al. Organogenic callus, as the target for plant regeneration and transformation via Agrobacterium, in soybean (Glycine max, (L.) Merr.)[J]. In Vitro Cellular and Developmental Biology-Plant, 2007, 43(6): 558-568.
[43]王爽, 郭兵福, 张丽娟, 等. 农杆菌介导大豆子叶节转化法外植体选择新方法[J]. 大豆科学, 2016, 35(5): 723-729. (Wang S, Guo B F, Zhang L J, et al. New method for the selection of explants in the Agrobacterium mediated cotyledon nodes transformation in soybean[J]. Soybean Science, 2016, 35(5): 723-729.)
[44]龚一富, 高峰. 根癌农杆菌感染对甘薯外植体生理生化特性的影响[J]. 中国农业科学, 2008, 41(6): 1649-1654. (Gong Y F, Gao F. Effects of Agrobacterium tumefaciens on the physiological and biochemical characters in sweet potato explants[J]. Scientia Agricultura Sinica, 2008, 41(6): 1649-1654.)
[45]Olhoft P M, Somers D A. L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells[J]. Plant Cell Reports, 2001, 20, 706-711.
[46]Olhoft P M, Lin K, Galbraith J, et al. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells[J]. Plant Cell Reports, 2001, 20, 731-737.
[47]Ditt R F, Nester E W, Comai L. Plant gene expression response to Agrobacterium tumefaciens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10954-10959.
[48]Tie W, Zhou F, Wang L, et al. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: Lessons from transformation assays and genome-wide expression profiling[J]. Plant Molecular Biology, 2012, 78(1-2): 1-18.
[49]Zhou X, Wang K,Lyu D, et al. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens[J]. Plos One, 2013, 8(11): e79390.
[50]Creelman R A, Mullet J E. Jasmonic acid distribution and action in plants:Regulation during development and response to biotic and abiotic stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4114-4119.
[51]Mariashibu T S, Subramanyam K, Arun M, et al. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars[J]. Acta Physiologiae Plantarum, 2013, 35(1): 41-54.
[52]Guo B F, Yong G, Wang J, et al. Co-treatment with surfactant and sonication signifi cantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean[J]. Journal of Integrative Agriculture, 2015, 14(7): 1242-1250.
[53]Wang G L, Xu Y N. Hypocotyl based Agrobacterium mediated transformation of soybean(Glycine max) and application for RNA interference[J]. Plant Cell Reports, 2008, 27(7): 1177-1184.
[54]李艳超, 赵青松, 王凤敏, 等. 大豆遗传转化技术研究进展[J]. 大豆科学, 2015, 34(1): 155-162. (Li Y C, Zhao Q S, Wang F M, et al. Recent advances of soybean transformation[J]. Soybean Science, 2015, 34(1): 155-162.)
[55]李桂兰, 刘晨光, 乔潇, 等. 共培养条件对农杆菌转化大豆子叶节的影响[J]. 核农学报, 2014, 28(9): 1567-1575. (Li G L, Liu C G, Qiao X, et al. Conditions of co-culture affecting on the efficiency of Agrobacterium-mediated transformation of cotyledonary node of soybean[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1567-1575.)

Memo

Memo:
-
Last Update: 2018-10-08