|Table of Contents|

Research Progress on Metabolic Pathways of Seed Protein and Related Regulation Mechanism in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年05期
Page:
794-80205
Research Field:
Publishing date:

Info

Title:
Research Progress on Metabolic Pathways of Seed Protein and Related Regulation Mechanism in Soybean
Author(s):
AO Yan1 WANG An2 WU Qi3 FENG Meng-shi2 JIANG Ying2 WU Wei2 CHANG Qing-tao2
(1.Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China; 2.Taizhou Academy of Agricultural Sciences, Taizhou 225300, China; 3.Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)
Keywords:
Soybean protein Protein classification Metabolic pathways Regulation mechanism
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2018.05.0794
Abstract:
Nitrogen is an indispensable nutrient for soybean. The nitrogen in the air can be transformed to protein in seed through Root-Rhizoma system and various pathway. Soybeans is an important food because of its nutritional qualities and functional properties, which contain considerably more protein content than other crops. This paper summarizes publications on the characteristics and classifications of soybean protein, discusses research progress of protein metabolism pathway and regulation mechanism in soybean. And we addressed effective way of breeding for high protein content soybean, which can provide the reference for soybean quality improvement.

References:

[1]牛宁, 李占军, 金素娟, 等. 大豆应答逆境胁迫的蛋白质组学研究进展[J]. 大豆科学, 2016, 35(2): 337-343.(Niu N, Li Z J, Jin S J, et al. Advances on proteomics of soybean under stress[J]. Soybean Science, 2016, 35(2): 337-343.)
[2]Grieshop C M, Fahey G C. Comparison of quality characteristics of soybeans from Brazil, China, and the United States[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 2669-2673.
[3]Espina M J, Ahmed C M S, Bernardini A, et al. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean[J]. Frontiers in Plant Science, 2018, 9: 394-405.
[4]Geng X T, Tang J J, Cheng K P, et al. Synthesis and cytotoxicity evaluation of 3-amino-2-hydroxypropoxygenistein derivatives[J]. Chinese Journal of Natural Medicines, 2017, 15(11): 871-880.
[5]Eder K, Siebers M, Most E, et al. An excess dietary vitamin E concentration does not influence Nrf2 signaling in the liver of rats fed either soybean oil or salmon oil[J]. Nutrition & Metabolism, 2017, 14: 71-85.
[6]Lund M N, Lametsch R, Hviid M S, et al. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage[J]. Meat Science, 2007, 77(3): 295-303.
[7]Cucu T, Devreese B, Kerkaert B, et al. A comparative study of lipid and hypochlorous acid induced oxidation of soybean proteins[J]. LWT-Food Science and Technology, 2013, 50(2): 451-458.
[8]Xu Y T, Liu L L. Structural and functional properties of soy protein isolates modified by soy soluble polysaccharides[J]. Journal of Agricultural and Food Chemistry, 2016, 64(38): 7275-7284.
[9]Piornos J A, Burgosdíaz C, Ogura T, et al. Functional and physicochemical properties of a protein isolate from AluProt-CGNA: A novel protein-rich lupin variety (Lupinus luteus)[J]. Food Research International, 2015, 76: 719-724.
[10]Ziegler V,Ferreira C D, Hoffmann J F, et al. Effects of moisture and temperature during grain storage on the functional properties and isoflavone profile of soy protein concentrate[J]. Food Chemistry, 2018, 242: 37-44.
[11]Rotundo J L, Westgate M E. Meta-analysis of environmental effects on soybean seed composition[J]. Field Crops Research, 2009, 110(2): 147-156.
[12]Wang J, Liu L, Guo Y, et al. A dominant locus, qBSC-1, controls β subunit content of seed storage protein in soybean (Glycine max(L.) Merri.)[J]. Journal of Integrative Agriculture, 2014, 13(9): 1854-1864.
[13]Boehm J D, Nguyen V, Tashiro R M, et al. Genetic mapping and validation of the loci controlling 7S alpha′ and 11S A-type storage protein subunits in soybean [Glycine max (L.) Merr.] [J]. Theoretical and Applied Genetics, 2018, 131: 659-671.
[14]Maruyama N, Matsuoka Y, Yokoyama K, et al. A vacuolar sorting receptor-independent sorting mechanism for storage vacuoles in soybean seeds[J]. Scientific Reports, 2018, 8(1): 1108-1116.
[15]Nielsen N C, Bassüner R, Beaman T. Cellular and molecular biology of plant seed development[M]. Berlin Springer Netherlands, 1997: 151-220.
[16]Kinsella J E. Functional properties of soy proteins[J]. Journal of the American Oil Chemists′ Society, 1979, 56: 242-258.
[17]Utsumi S, Kinsella J E. Forces involved in soy protein regulation: Effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S, and soy isolate[J]. Journal of Food science, 1985, 50:1278-1282.
[18]Naito S, Hirai M Y, Chino M, et al. Expression of a soybean (Glycine max [L.] Merr.) seed storage protein gene in transgenic Arabidopsis thaliana and its response to nutritional stress and to abscisic acid mutations[J]. Plant Physiology, 1994, 104(2): 497-503.
[19]Nagano T, Hirotsuka M, Mori H, et al. Dynamic vsicoelastic study on the gelation of 7S globulin from soybeans[J]. Journal of Agricultural & Food Chemistry, 1992, 40(6): 941-944.
[20]Maruyama N, Mohamed Salleh M R, Takahashi K, et al. Structure-physicochemical function relationships of soybean beta-conglycinin heterotrimers[J]. Journal of Agricultural & Food Chemistry, 2002, 50(15): 4323-4326.
[21]Naito S, Hirai M K, Nambara E, et al. Expression of soybean seed storage protein genes in transgenic plants and their response to sulfur nutritional conditions[J]. Journal of Plant Physiology, 1995, 145(6): 614-619.
[22]Magni C, Sessa F, Capraro J, et al. Structural and functional insights into the basic globulin 7S of soybean seeds by using trypsin as a molecular probe[J]. Biochemical & Biophysical Research Communications, 2018, 496: 89-94.
[23]Singh A, Meena M, Kumar D, et al. Structural and functional analysis of various globulin proteins from soy seed[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(11): 1491-1502.
[24]Utsumi S, Matsumura Y, Mori T. Food proteins & their applications[M]. UK:Taylor Francis Inc, 1997: 257-291.
[25]Yang A, Yu X, Zheng A, et al.Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4[J]. Food Chemistry, 2016, 210: 148-155.
[26]Tezuka M, Taira H, Igarashi Y, et al. Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 1111-1117.
[27]Nielsen N C. Soybean genetics molecular biology & biotechnology[M]. UK: CAB International, 1996: 127-163.
[28]Utsumi S, Kinsella J E. Structure-function relationships in food proteins: Sub-unit interactions in heat-induced gelation of 7S,11S and soy isolate proteins [J]. Journal of Agricultural and food chemistry, 1985, 33: 297-303.
[29]Murzin A G, Brenner S E, Hubbard T. SCOP:A structural classification of proteins database for the investigation of sequences and structures[J]. Journal of Molecular Biology, 1995, 247(4): 536-540.
[30]Xu J, Mukherjee D, Chang S. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization[J]. Food Chemistry, 2017, 240: 1005-1013.
[31]Burks A W, Cockrell G, Connaughton C, et al. Identification of peanut agglutinin and soybean trypsin inhibitor as minor legume allergens[J]. International Archives of Allergy & Immunology, 1994, 105(2):143-149.
[32]Arp D J. Rhizobium japonicum hydrogenase: Purification to homogeneity from soybean nodules, and molecular characterization[J]. Arch Biochem Biophys, 1985, 237: 504-512.
[33]Tanaka K, Nguyen CT, Libault M, et al. Enzymatic activity of the soybean ecto-apyrase GS52 is essential for stimulation of nodulation[J]. Plant Physiol, 2011, 155: 1988-1998.
[34]Ferguson B J. Rhizobia and legume nodulation genes[J]. Brenners Encyclopedia of Genetics, 2013: 236-239.
[35]Silva L R, Pereira M J, Azevedo J, et al. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds[J]. Food Chemistry, 2013, 141(4): 3636-3648.
[36]Zahran H H. Rhizobium legume symbiosis and nitrogen fixation under severe conditions and in arid climate[J]. Microbiology & Molecular Biology Reviews, 1999, 63(4): 968-989.
[37]Delves A C, Mathews A, Day D A, et al. Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors[J]. Plant Physiology, 1986, 82(2): 588-590.
[38]Kim J, Rees D C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein[J]. Science, 1992, 257: 1677-1682.
[39]Schweitzer L E, Harper J E. Effect of light, dark and temperature on root nodule activity (acetylene reduction) of soybeans[J]. Plant Physiology, 1980, 65(1):51-56.
[40]万涛, 邸伟, 马春梅, 等. 大豆根瘤固氮酶活性与温度关系的研究[J]. 作物杂志, 2012, 6: 56-60.(Wan T, Di W, Ma C M, et al. Study on the relationship between soybean nodule nitrogenase activity[J]. Crops, 2012, 6: 56-60.)
[41]Chen W, Zheng D, Feng N, et al. The effects of gibberellins and mepiquat chloride on nitrogenase activity in Bradyrhizobium japonicum[J]. Acta Physiologiae Plantarum, 2015, 37(1): 1723-1733.
[42]Xia B, Sun Z, Wang L, et al. Analysis of the combined effects of lanthanum and acid rain, and their mechanisms, on nitrate reductase transcription in plants[J]. Ecotoxicology and Environmental Safety, 2017, 138: 170-178.
[43]Baghel L, Kataria S, Guruprasad K N. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean[J]. Bioelectromagnetics, 2016, 37(7): 455-470.
[44]Sánchez C, Itakura M, Okubo T, et al. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum[J]. Environmental Microbiology, 2014, 16(10): 3263-3274.
[45]Nicholas J C, Harper J E, Hageman R H. Nitrate reductase activity in soybeans (Glycine max [L.] Merr.): I. Effects of light and temperature[J]. Plant Physiology, 1976, 58: 731-735.
[46]Huang G, Wang L, Sun Z, et al. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings[J]. Biological Trace Element Research, 2015, 163: 224-234.
[47]Sun H, Wang L, Zhou Q. Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings[J]. Environmental Toxicology and Chemistry, 2013, 32:174-180.
[48]Verma D P S, Fortin M G, Stanley J, et al. Nodulins and nodulin genes of Glycine max[J]. Plant Molecular, 1986, 7(1): 51-61.
[49]Fuller F, Künstner P W, Nguyen T, et al. Soybean nodulin genes: Analysis of cDNA clones reveals several major tissue-specific sequences in nitrogen-fixing root nodules[J].Proceedings of the National Academy of Sciences,1983, 80(9) : 2594-2598.
[50]Gresshoff P M. Nitrogen fixation:Achievements and objectives[M]. Germany: Springer Science and Business Media, 2012.
[51]Perret X, Staehelin C, Broughton W J. Molecular basis of symbiotic promiscuity[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 180-201.
[52]Catherine M B, Eric G, Xavier P, et al. Establishing nitrogen-fixing symbiosis with legumes:How many rhizobium recipes?[J]. Trends in Microbiology, 2009, 17(10): 458-466.
[53]Morey K J, Ortega J L, Sengupta-Gopalan C. Cytosolic glutamine synthetase in soybean is encoded by a multigene family, and the members are regulated in an organ-specific and developmental manner[J]. Plant Physiology, 2002, 128(1): 182-193.
[54]Ishiyama K, Hayakawa T, Yamaya T. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions[J]. Planta, 1998, 204(3): 288-294.
[55]Lu W, Li H, Yuan D, et al. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean[J]. Theoretical & Applied Genetics, 2013, 126(2): 425-433.
[56]Zhang D, Lyu H, Chu S, et al. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean[J]. Scientific Reports, 2017, 7(1):5053-5065.
[57]Zhang D, Kan G, Hu Z, et al. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics, 2014, 127(9):1905-1915.
[58]Li D, Zhao X, Han Y, et al. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions[J/OL]. Genomics, 2018, https://doi.org/10.1016/j.ygeno.2018.01.004.
[59]Okazaki S, Kaneko T, Sato S, et al. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system[J]. Proceedings of the National Academy of Sciences, 2013, 110(42): 17131-17136.
[60]Lim C W, Lee Y W, Lee S C, et al. Nitrate inhibits soybean nodulation by regulating expression of CLE genes[J]. Plant Science, 2014, 229: 1-9.
[61]Chiasson D M, Loughlin P C, Mazurkiewicz D, et al. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH+4 transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4814-4819.
[62]Sugawara M, Shah G R, Sadowsky M J, et al. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions[J]. Molecular Plant-Microbe Interaction, 2011, 24(4): 451-457.
[63]Kim Y K, Kim S, Um J H, et al. Functionalimplication of β-carotene hydroxylases in soybean nodulation[J]. Plant Physiology, 2013, 162(3): 1420-1433.
[64]Lee H I,In Y H, Jeong S Y, et al. Inactivation of the lpcC, gene alters surface-related properties and symbiotic capability of Bradyrhizobium japonicum[J]. Letters in Applied Microbiology, 2014, 59(1): 9-16.
[65]Masalkar P, Wallace I S, Hwang J H, et al. Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin[J]. Journal of Biological Chemistry, 2010, 285(31): 23880-23888.
[66]Ortega J L, Wilson O L, Sengupta-Gopalan C. The 5’ untranslated region of the soybean cytosolic glutamine synthetase β1 gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants[J]. Molecular Genetics and Genomics, 2012, 287(11-12): 881-893.
[67]Masalkar P D, Roberts D M. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: Distinct oligomeric structures and thiol-based regulation[J]. FEBS Letters, 2015, 589(2): 215-221.
[68]张同勋. 小麦谷氨酰胺合成酶在氮素代谢中的功能分析[D]. 郑州: 河南农业大学, 2012. (Zhang T X. The functional analysis of glutamine synthetase innitrogen metabolism in wheat[D]. Zhouzhou: Henan Agricultural University, 2012.)
[69]Seger M, Gebril S, Tabilona J, et al. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco[J]. Planta, 2015, 241(1): 69-81.
[70]Djennane S, Chauvin J E, Quilleré I, et al. Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers[J]. Transgenic Research, 2002, 11(2): 175-184.
[71]Sun F, Hou X, Li Y, et al. Molecular cloning and characterization of nitrate reductase gene cDNA from non-heading Chinese cabbage[J]. Frontiers of Agriculture in China, 2007, 1(2): 188-192.
[72]Lea P J, Blackwell R D, Joy K W. Ammonia assimilation in higher plants[M]. United Nations: Food and Agriculture Organization, 1992.
[73]Ishizaki T, Ohsumi C, Totsuka K, et al. Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana[J]. Amino Acids, 2010, 38(3): 943-950.
[74]Zeng D D, Qin R, Li M, et al. The ferredoxin-dependent glutamate synthase(OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice[J]. Molecular Genetics and Genomics, 2017, 292(2): 385-395.
[75]Nigro D, Blanco A, Anderson O D, et al. Characterization of ferredoxin-dependent glutamine-oxoglutarate amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat[J]. PloS One, 2014, 9(8): e103869.
[76]Wang H W, Zhang B, Hao Y J, et al. The soybean Dof-type transcription factor genes,GmDof4and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant Journal, 2007, 52(4): 716-729.
[77]Zhang J, Hao Q, Bai L, et al. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea[J]. Biotechnology for Biofuels, 2014, 7(1): 128.
[78]Song Q X, Li Q T, Liu Y F, et al. Soybean GmbZIP123gene enhances lipid content in the seeds of transgenic Arabidopsis plants[J]. Journal of experimental botany, 2013, 64(14): 4329-4341.
[79]Lu X, Li Q T, Xiong Q, et al. The transcriptomic signature of developing soybean seeds reveals thegenetic basis of seed trait adaptation during domestication[J]. The Plant Journal, 2016, 86(6): 530-544.
[80]Zhang Y Q, Lu X, Zhao F Y, et al. Soybean GmDREBL increases lipid content in seeds of transgenic Arabidopsis[R]. Scientific Reports, 2016, 6: 34307.
[81]Zhang C, Meng Q, Gai J, et al. Cloning and functional characterization of an O-acetylserine (thiol) lyase-encoding gene in wild soybean (Glycine soja)[J]. Molecular Biology Reports, 2008, 35(4): 527-534.
[82]Ning H, Zhang C, Yao Y, et al. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4in tobacco increases cysteine levels and enhances tolerance to cadmium stress[J]. Biotechnology Letters, 2010, 32(4): 557-564.
[83]Kyrychenko O, Mahfouze H A, El-Sayed O, et al. The affect of specific plant exogenous lectin on the symbiotic potential of soybean-rhizobium system and lectin activity of soybean seeds[J]. Scientia Agriculturae, 2014, 6(1):1-7.
[84]Cooper B, Campbell K B, Beard H S, et al. Aproteomic network for symbiotic nitrogen fixation efficiency in Bradyrhizobium elkanii[J]. Molecular Plant-Microbe Interactions, 2018, 31:334-343.
[85]Gao T G, Xu Y Y, Jiang F, et al. Nodulation characterization and proteomic profiling of Bradyrhizobium liaoningense CCBAU05525 in response to water-soluble humic materials[R]. Scientific Reports, 2015, 5:10836.
[86]曹永强, 宋书宏, 董丽杰. 大豆蛋白质和油分含量遗传研究进展[J]. 大豆科学, 2012, 31(2): 316-319. (Cao Y Q, Song S H, Dong L J. Research progress on heredity of protein and oil content in soybean[J]. Soybean Science, 2012, 31(2): 316-319.)

Memo

Memo:
-
Last Update: 2018-10-08