|Table of Contents|

Study on the Preparation and Cultivation of Soybean Callus Protoplasts(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年05期
Page:
741-747
Research Field:
Publishing date:

Info

Title:
Study on the Preparation and Cultivation of Soybean Callus Protoplasts
Author(s):
SU Tong1 YAO Lu-ming1 ZHANG Xin2 WANG Biao1 WU Tian-long1
(1.School of Agricultural and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; 2.College of Life and Environment Science, Shanghai Normal University,Shanghai 200234, China)
Keywords:
Soybean Callus Protoplasts Regeneration Orthogonal design
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2018.05.0741
Abstract:
Protoplasts with cell totipotency are ideal materials for exploring genetic transformation and gene function of plants. In order to product and culture effectively protoplast of soybean, the callus induced by immature cotyledons of Jiaoda 05-133 was used as materials preparing for protoplasts in this study. Cellulase onozuka R-10, pectolyase Y-23 and macerozyme R-10 were designed according to the orthogonal array, at the same time, the influence of different enzymatic hydrolysis time on the protoplast yield were explored for optimizing protoplast preparation conditions. Two culture methods with agarose bead and liquid culture were compared to establish an efficient protoplasm regeneration system. The results showed that, the enzyme combination containing cellulase onozuka R-10(2%), Pectolyase Y-23(0.1%), macerozyme R-10(1%) was the optimal for protoplasts isolation of Jiaoda 05-133 callus. Under this condition, the appropriate time for Jiaoda 05-133 callus protoplasts isolation was 5 h in enzyme solution and the amounts of protoplasts reaching(3.976±0.86)×106·g-1 with high quality and vigour were attained. Comparing the two culture methods, the results showed that the agarose bead culture with higher plating rate is more suitable for the cell

References:

[1]彭章, 童华荣, 梁国鲁, 等. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报,2018,44(3):463-470. (Peng Z, Tong H R, Liang G L. Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant. (Camellia sinensis L. O. Kuntze) [J]. Acta Agronomica Sinica,2018,44(3):463-470.
[2]Nanjareddy K, Arthikala M K, Blanco L, et al. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf discinfiltration of Phaseolus vulgaris: Tools for rapid gene expression analysis[J]. BMC Biotechnol, 2016, 16: 53.
[3]Wei Z M, Xu Z H. Plant regeneration from protoplasts soybean[J]. Plant Cell Reports, 1988, 7: 348-351.
[4]张晓慧, 韩榕. 两种瞬时表达体系研究拟南芥Profilin-1的亚细胞定位[J]. 生物技术通报, 2017, 33(5): 57-62. (Zhang X H, Han R. Subcellular localization of profilin-1 from Arabidopsis utilizing two transient expression systems[J]. Biotechnology Bulletin, 2017, 33(5): 57-62.)
[5]Walter M, Chaban C, Schütze K, et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation[J]. Plant Journal, 2004, 40(3): 428-438.
[6]Lin C S, Hsu C T, Yang L H, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single cell mutation detection to mutant plant regeneration[J]. Plant Biotechnology Journal, 2017, 12: 1111-1287.
[7]文峰, 肖诗鑫, 聂扬眉, 等. 木薯脆性胚性愈伤组织原生质体培养与植株再生[J]. 中国农业科学, 2012, 45(19): 4050-4056. (Wen F, Xiao S X, Nie Y M, et al. Protoplasts culture isolated from friable embryogenic callus of cassava and plant regeneration[J]. Scientia Agricultura Sinica, 2012, 45(19): 4050-4056.)
[8]罗希明, 简玉瑜. 大豆叶肉细胞原生质体的游离和培养[J]. 吉林农业科学, 1984, 2: 20-24. (Luo X M, Jian Y Y. Isolation and cultivation of soybean mesophyll protoplast[J]. Journal of Jilin Agricultural Sciences, 1984, 2: 20-24.)
[9]吕慧能, 盖钧锰, 马育华, 等. 不同激素条件下大豆原生质体培养和植株再生[J]. 作物学报, 1993, 19: 328-333. (Lyu H N, Gai J Y, Ma Y H, et al. Soybean protoplast culture under different hormone conditions and plantlet regeneration[J]. Acta Agronomica Sinica, 1993, 19: 328-333. )
[10]Finer K R, Finer J J. Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication assisted Agrobacterium mediated transformation treated soybean cotyledons[J]. Letters in Applied Microbiology, 2000, 30: 406-410.
[11]Christou P, Murphy J E, Swain W F. Stable transformation of soybean by electroporation and root formation from transformed callus[J]. PNAS, 1987, 84: 3962-3966.
[12]Dhir S K, Dhir S, Savka M A, et al. Regeneration of transgenic soybean (Glycine max) plants from electroporated protoplasts[J]. Plant Physiology, 1992, 99: 81-88.
[13]Sun X, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 2015, 5:10342.
[14]张龄丹. PEG介导玉米叶肉细胞原生质体瞬时基因转化体系的应用研究[D]. 安徽:安徽农业大学, 2016. (Zhang L D. A study on the application of PEG-mediated transient gene expression system in maize mesophyll protoplasts[D]. Anhui: Anhui Agricultural University, 2016.)
[15]Lin C S, Hsu C T, Yang L H, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single cell mutation detection to mutant plant regeneration[J]. Plant Biotechnology Journal, 2017, 12: 1111-12870.
[16]Finer J J, Nagasawa A. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.)[J]. Plant Cell, Tissue and Organ Culture, 1988, 15(2): 125-136.
[17]张玉梅, 王彪, 张忠滨, 等. 优质、丰产菜用大豆新品种交大05-133的选育[J]. 种子, 2013, 32(3): 102-104. (Zhang Y M, Wang B, Zhang Z B, et al. Breeding for fine quality and high yield of vegetable soybean Jiaoda 133[J]. Seed, 2013, 32(3): 102-104.)
[18]程静琳, 闫军辉, 钟云鹏, 等. 大豆高效体细胞胚诱导和增殖方法的研究[J]. 大豆科学, 2014, 33(3): 305-310. (Cheng J L, Yan J H, Zhong Y P, et al. Research to the effective methods of soybean somatic embryo induction and Proliferation[J]. Soybean Science, 2014, 33(3): 305-310.)
[19]Hinchee M A W, Connor-Ward D V, Newell C A, et al. Production of transgenic soybean plants using Agrobacterium mediated DNA transfer[J]. Nature Biotechnology, 1988, 6: 915-922.
[20]Dhir S K, Dhir S, Widholm J M. Regeneration of fertile plants from protoplasts of soybean (Glycine max L. Merr.): Genotypic differences in culture response[J]. Plant Cell Reports, 1992, 11: 285-289.
[21]Dhir S K, Dhir S, Wildhom J M. Plantlet regeneration from immature cotyledon protoplasts of soybean (Glycine max L.) [J]. Plant Cell Report, 1991, 10: 39-43.
[22]Sarwan K, Dhir S D, Jack M, et al. Regeneration of fertile plants from protoplasts of soybean [Glycine max (L.) Merrill]: Genotypic differences in culture response[J]. Plant Cell Reports, 1992, 11: 285-289.
[23]王娟, 李玉珠, 师尚礼. 苜蓿愈伤组织原生质体游离与培养[J]. 草地学报, 2010, 18(2): 258-262. (Wang J, Li Y Z, Shi S L. Dissociation and culture of callus protoplasts of Medicago sativa L[J]. Acta Agrectir Sinica, 2010, 18(2): 258-262.)
[24]公维丽, 王禄山, 张怀强. 植物细胞壁多糖合成酶系及真菌降解酶系[J]. 生物技术通报, 2015, 31(4): 149-165. (Gong W L, Wang L S, Zhang H Q. Diverse synthetases and fungi degradation enzymes for the polysaccharides of plant cell walls[J]. Biotechnology Bulletin, 2015, 31(4): 149-165.)
[25]肖文言, 王连铮. 大豆幼荚子叶原生质体培养及植株再生[J]. 作物学报, 1994, 20(6): 665-670. (Xiao W Y, Wang L Z. Protoplast culture and plant regeneration of immature cotyledons of soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 1994, 20(6): 665-670.)
[26]Shu Y J, Huang L Y, Chen M, et al. Establishment and optimization of systems for protoplasts isolation of soybean and chickpea that used in subcellular location[J]. Chinese Journal of Biotechnology, 2017, 33: 976-985.
[27]林开江, 袁康培, 王坤元, 等. 植物细胞离析酶的制备和应用[J]. 生物工程学报, 1994, 10(1): 71-75. (Lin K J, Yuan K P, Wang K Y, et al. Preparation and application of Maceration enzyme from Aspergillus sp[J]. Chinese Journal of Biotechnology, 1994, 10(1): 71-75.)
[28]陶茸, 李玉珠, 王娟, 等. 扁蓿豆愈伤组织原生质体分离条件的研究[J]. 草业学报, 2011, 19(2): 288-293. (Tao R , Li Y Z, Wang J, et al. Protoplasts isolation conditions of Melilotoides ruthenica Callus[J]. Acta Prataculturae Sinica, 2011, 19(2): 288-293.)

Memo

Memo:
-
Last Update: 2018-10-08