|Table of Contents|

Motion Analysis and Structure Design of Multi-rotor Planting UAVs(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年04期
Page:
614-620
Research Field:
Publishing date:

Info

Title:
Motion Analysis and Structure Design of Multi-rotor Planting UAVs
Author(s):
QIN Chao-bin CUI Yin-tao ZHANG Zhi ZHANG Kai-feiLI He
(College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China)
Keywords:
Multi-rotor UAVs Plant protection Summer soybean Control efficiency model Simulation analysis
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2018.04.0614
Abstract:
Multi-rotor planting UAV is an plant protection machine emerged recent years. Its operation is highly efficient, its operating cost is low, and its adaptability is strong. It can work across regions and reduce the contact with pesticides during the operation. The multi-rotor planting UAV application technology maturated gradually, and the wing downwash air flow is beneficial to increase the penetration of its spraying liquid during application. Multi-rotor planting UAVs will not be subject to crop crushing during operation, and it is very suitable for pest control operations during the latter stages of summer soybean growth. Combining the current research status of plant protection spray technology at home and abroad, after field trials of basic models, the theoretical analysis of plant protection UAVs and the simulation testing of the fluid inside the box were carried out, and a stable plant protection UAV rack structure was proposed. Through SolidWorks Simulation′s simulation analysis of parts and optimization of the model, the structure of the rack platform has become more stable, and multi-rotor plant protection UAV that meet the modern agricultural production conditions has been designed.

References:

[1]周志艳, 臧英, 罗锡文, 等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013, 29(24): 1-10. (Zhou Z Y, Zang Y, Luo X W, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 1-10.)
[2]郭永旺, 袁会珠, 何雄奎, 等. 我国农业航空植保发展概况与前景分析[J]. 中国植保导刊, 2014, 34(10): 78-82. (Guo Y W, Yuan H Z, He X K, et al. Overview and prospect analysis of China′s agricultural aviation plant protection development[J]. China Plant Protection, 2014, 34(10): 78-82.)?
[3]张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. (Zhang D Y, Lan Y B, Chen L P, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59.)
[4]Yamaha Remotely Piloted Helicopters [DB/OL]. https://www.yamahamotorsports.com/motorsports/pages/precision-agriculture,2016.
[5]杨陆强, 果霖, 朱加繁, 等. 我国农用无人机发展概况与展望[J]. 农机化研究, 2017, 39(8): 6-11. (Yang L Q, Guo L, Zhu J F, et al. The development situation and prospect of agricultural UAV in China[J]. Journal of Agricultural Mechanization Research, 2017,39(8):6-11.)
[6]周志艳, 明锐, 臧禹, 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20):1-13.(Zhou Z Y, Ming R, Zang Y, et al. Development status and countermeasures of agricultural aviation in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 1-13.)
[7]徐小杰, 陈盛德, 周志艳,等. 植保无人机主要性能指标测评方法的分析与思考[C]. 北京: 国际精准农业航空会议, 2016. (Xu X J, Chen S D, Zhou Z Y, et al. Analysis and reflection on the evaluation methods of main performance indicators for plant protection drones [C]. Beijing: International Conference on Precision Agricultural Aviation, 2016.)
[8]刘剑君, 贾世通, 杜新武, 等. 无人机低空施药技术发展现状与趋势[J]. 农业工程, 2014, 29(5): 25-29. (Liu J J, Jia S T, Du X W, et al. Development status and trends of low-altitude unmanned aerial vehicles spraying technology[J]. Agricultural Engineering, 2014, 29(5): 25-29.)
[9]薛新宇. 航空施药技术应用及对水稻品质影响研究[D]. 南京: 南京农业大学, 2013. (Xue X Y. Applications of modern pesticide aerial application technology and the impact on rice quality[D]. Nanjing: Nanjing Agricultural University, 2013.)
[10]秦维彩, 薛新宇, 周立新, 等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 30(5): 50-56. (Qin W C, Xue X X, Zhou L X, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 50-56.)
[11]陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. (Chen S D, Lan Y B, Li J Y, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 40-46.)
[12]高圆圆. 无人直升机(UAV)低空低容量喷洒农药雾滴在禾本科作物冠层的沉积分布及防治效果研究[D]. 哈尔滨: 东北农业大学, 2013. ( Gao Y Y. Study on the deposition, distribution and control effect of low-altitude and low-volume pesticide spraying droplets of unmanned helicopters(UAV) in grass crops[D]. Harbin: Northeast Agricultural University, 2013.)
[13]李赫, 秦超彬, 刘道奇, 等. 多旋翼植保无人机施药技术研究[C]. 北京: 全国大豆学术讨论会, 2017. ( Li H, Qin C B, Liu D Q, et al. Research on multi-rotor plant protection UAV application technology[C]. Beijing: National Soybean Symposium, 2017.)
[14]杨风波, 薛新宇, 蔡晨, 等. 多旋翼植保无人机悬停下洗气流对雾滴运动规律的影响[J]. 农业工程学报, 2018, 34(2): 64-73.( Yang F B,Xue X Y,Cai C,et al.Effects of the multi-rotary winged plant protection drone hovering under scrubber airflow on the movement of droplets[J].Transactions of the Chinese Society of Agricultural Engineering,2018, 34(2): 64-73.)
[15]王大伟, 高席丰. 植保无人机药箱建模与姿态控制器设计[J]. 排灌机械工程学报, 2015, 33(11):1006-1012. (Wang D W, Gao X F. Liquid tank modelling and attitude controller design of plant protection UAV[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(11): 1006-1012.)
[16]王斌. 八旋翼电动植保无人机的研制与试验分析[D]. 长春: 吉林农业大学, 2017. (Wang B. Development and experimental analysis of eight-rotor wing power plant protection drone[D]. Changchun: Jilin Agricultural University, 2017.)
[17]王传之. 夏大豆除草剂的选择应用及药害防治要点[J]. 大豆科技, 2016(3):12-15. (Wang C Z. Selection and application of summer soybean herbicides and points for control of pest control[J]. Soybean Science and Technology, 2016(3): 12-15.)
[18]Harrington A M. Optimal propulsion system design for a micro quad rotor[D]. USA: University of Maryland College Park, 2011.
[19]Yoon S, Lee H C, Pulliam T H. Computational analysis of multi-rotor flows[C].USA: 54th AIAA Aerospace Sciences Meeting, 2016.
[20]Sarac A S, Serantoni M, Tofail S A M, et al. Morphological and spectroscopic analyses of poly [N-vinylcarbazole-co-vinylbenzenesulfonic acid] copolymer electro grafted on carbon fiber: The effect of current density[J]. Applied Surface Science, 2004, 229(1-4): 13-18.

Memo

Memo:
-
Last Update: 2018-08-01