|Table of Contents|

Effects of Silicon on Growth and Physiological Characteristics of Wild Soybean Seedlings Under Drought Stress(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年02期
Page:
263-267
Research Field:
Publishing date:

Info

Title:
Effects of Silicon on Growth and Physiological Characteristics of Wild Soybean Seedlings Under Drought Stress
Author(s):
ZHENG Shi-ying1 ZHENG Xiao-tong2 GENG Jian-fen1 ZHENG Fang1 LI Shi-ping1 PAN En-jing1 LI Dong-chen1
(1.College of Ecology and Landscape Architecture, Dezhou University, Dezhou 253023, China; 2.School of Statistics, Renmin University of China, Beijing 100872, China)
Keywords:
Silicon Drought stress Wild soybean Physiological property
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2018.02.0263
Abstract:
In order to explore the effect of exogenous silicon on the growth of wild soybean under drought stress, the effects of different concentrations of exogenous silicon on the growth and physiological characteristics of soybean seedlings under drought stress were studied. The results showed that drought stress could reduce the fresh weight, dry weight, chlorophyll content, root vigor and SOD, CAT, POD activity of wild soybean, and increase cell membrane permeability, MDA content, free proline and soluble sugar content. With the increasing of silicon concentration, fresh weight, dry weight, chlorophyll content and root vigor of wild soybean increased. Low concentration of silicon stress increased the activity of SOD, CAT and POD, reduced cell membrane permeability, MDA content, free proline and soluble sugar content, with the increasing of silicon stress concentration, SOD, CAT, POD activity gradually decreased, cell membrane permeability, MDA content, free proline and soluble sugar content decreased first and then increased. It indicated that exogenous silicon could effectively promote the growth of wild soybean seedlings under drought stress, improve the antioxidant enzyme activity, reduce cell membrane permeability, MDA content, free proline and soluble sugar of content, so exogenous silicon can alleviate the harm of drought stress to wild soybean seedlings and improve the drought resistance of wild soybean.

References:

[1]胡小梅, 张必弦, 朱延明, 等. 野生大豆资源的研究与利用[J].安徽农业科学, 2011, 39(22): 1311-1313. ( Hu X M, Zhang B X, Zhu Y M, et al. Research and utilization of wild soybean resources[J]. Journal of Anhui Agricultural Sciences, 2011, 39(22): 1311-1313.)
[2]陈伟, 蔡昆争, 陈基宁.硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响[J].生态学报,2012,32(8): 2620-2628. (Chen W, Cai K Z, Chen J N. Effects of silicon application and drought stress on photosynthetic traits and mineral nutrient absorption of rice leaves[J]. Acta Ecologica Sinica, 2012, 32(8): 2620-2628.)
[3]侯亚秋, 张剑侠. 干旱对大豆的影响及防御措施[J].黑龙江气象, 2005(4): 23-24. (Hou Y Q, Zhang J X. Influence of drought on soybean and its defensive measures[J]. Heilongjiang Meteorology, 2005(4): 23-24.)
[4]李明, 王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报, 2002, 22(4): 503-507. (Li M, Wang G X. Effect of drought stress on activities of cell defense enzymes and lipid peroxidation in glycyrrhiza uralensis seedlings [J]. Acta Ecologica Sinica, 2002,22(4): 503-507.)
[5]王林红, 乔潇, 乔亚科, 等.PEG模拟干旱胁迫下不同类型大豆的生理生化影响[J]. 大豆科学, 2014,33(3): 370-373. (Wang L H, Qiao X, Qiao Y K, et al. Physiological and biochemical responses of different soybeans under PEG simulated drought stress[J]. Soybean Science, 2014,33(3): 370-373.) ?
[6]沈雪峰, 李召虎, 段留生, 等.硅对大豆碳代谢及产量形成的影响[J].大豆科学, 2013,32(2): 193-196. (Shen X F, Li Z H, Duan L S, et al. Effect of silicon on carbon metabolism and yield of soybean[J]. Soybean Science, 2013,32(2): 193-196.)
[7]张志良, 瞿伟菁.植物生理学实验指导[M].北京: 高等教育出版社, 2002:57-60. (Zhang Z L,Qu W J.A guide of physiological experiment[M].Beijing: Higher Education Press, 2002:57-60.)
[8]高俊风.植物生理学实验技术[M].西安: 世界图书出版公司, 2000:76-78.(Gao J F. Plant physiology experiment technology[M].Xi′an:World Book Inc., 2000:76-78.)
[9]王厚鑫, 刘鸣达, 张惠, 等.施硅对草地早熟禾生长特性和抗旱性的影响[J]. 北方园艺, 2007, 31(9): 135-137. (Wang H X,Liu M D,Zhang H, et al. Effect of Si application on Kentucky Bluegrass on growth characteristic and drought-resistance[J].Northern Horticulture, 2007, 31(9): 135-137.)
[10]周秀杰, 赵红波, 马成仓, 等.外源硅对黄瓜叶片组织结构和保水能力的影响[J]. 生态学杂志, 2009, 28(3): 556-559. (Zhou X J,Zhao H B,Ma C C, et al. Effects of exogenous silicon on leaf structure and water-holding capacity of cucumber plant[J]. Chinese Journal of Ecology, 2009, 28(3): 556-559.)
[11]郑世英, 郑建峰, 徐建, 等. 外源硅对PEG胁迫下小麦幼苗生长及抗氧化酶活性的影响[J].干旱地区农业研究, 2017, 35(2): 75-78. (Zheng S Y, Zheng J F, Xu J, et al. Effects of exogenous silicon on plant growth and activity of anti-oxidative enzymes in wheat seedings under drought stress[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 75-78.)
[12]何淑平, 靳亚忠, 王鹏.硅对干旱胁迫下四棱豆幼苗生物量和生理特性的影响[J]. 水土保持学报, 2015, 29(2): 263-267. (He S P,Jin Y Z,Wang P. Effects of silicon on biomass and physiological properties of winged bean seedling under drought stress[J].Journal of Soil and Water Conservation, 2015, 29(2): 263-267.)
[13]李清芳,马成仓,尚启亮.干旱胁迫下硅对玉米光合作用和保护酶的影响[J].应用生态学报, 2007,18(3):531-536.(Li Q F,Ma C C,Shang Q L. Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress[J]. Chinese Journal of Applied Ecology, 2007,18(3):531-536.)
[14]郑世英, 王景平, 李士平.干旱胁迫对野生及栽培大豆幼苗生理特性及抗氧化酶活性的影响[J].干旱地区农业研究, 2014,32(3):35-38. (Zheng S Y, Wang J P, Li S P. The effects of drought stress on characteristics and activities of antioxidase of Glycine soja and Glycine max[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 35-38. ?
[15]刘俊, 廖柏寒, 周航, 等.镉胁迫对大豆花荚期生理生态的影响[J].生态环境学报, 2009, 18(1): 176-182. (Liu J, Liao B H,Zhou H, et al. Effects of Cd2+ on the physiological and biochemical properties of Glycine max in flowering-poding phase[J]. Ecology and Environmental Sciences, 2009,18(1): 176-182.)
[16]楼靓珺, 宋新山, 赵晓祥. 苗期大豆对土壤水分和空气湿度变化的生理生化响应[J].草业科学, 2013,30(6):898-903.(Lou L J,Song X S,Zhao X X.Response of physiology and biochemistry of soybean seedling to soil water deficit and air humidity [J]. Pratcultural Science, 2013,30(6):898-903.)
[17]王丽燕. 硅对野生大豆幼苗耐盐性的影响及其机制研究[J]. 大豆科学, 2013, 32(5):659-663. ( Wang L Y. Effects of exogenous silicon on germination of Glycine soja under salt stress[J].Soybean Science, 2013, 32(5):659-663.)
[18]李雁博, 张蕴薇, 哈依夏.须芒草、虉草和柳枝稷对干旱和盐胁迫的生理响应[J]. 草业科学, 2014,31(5): 905-914. (Li Y B, Zhang Y W, Ha Y X. Physiological responses of bluestem, reed canarygress and switchgrass under drought and salinity stress [J]. Pratcultural Science, 2014,31(5): 905-914.)
[19]包卓,孟祥英,张晓松, 等.干旱胁迫对5种园林绿化植物光合速率和渗透调节的影响[J]. 江苏农业科学, 2010(3): 225-227. (Bao Z, Meng X Y,Zhang X S, et al. Effects of drought stress on photosynthetic rate and osmotic adjustment of 5 landscape plants[J]. Jiangsu Agricultural Sciences, 2010(3): 225-227.)
[20]丁燕芳, 梁永超, 朱佳, 等.硅对干旱胁迫下小麦幼苗生长及光合参数的影响[J].植物营养与肥料学报, 2007,13(3): 471-478.(Ding Y F, Liang Y C, Zhu J, et al. Effects of silicon on plant growth,photosynthetic parameters and soluble sugar content in leaves of wheat under drought stress[J]. Plant Nutrition and Fertilizer Science, 2007,13(3): 471-478.)

Memo

Memo:
-
Last Update: 2018-04-02