|Table of Contents|

Effect of Topsoil Treatment on Characteristics of Soil Aggregates of Soybean Field and Soybean Yield(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年02期
Page:
251-257
Research Field:
Publishing date:

Info

Title:
Effect of Topsoil Treatment on Characteristics of Soil Aggregates of Soybean Field and Soybean Yield
Author(s):
HE Song-yu1 LIU Jian-sheng2 ZHANG Ming-cong1 JIN Xi-jun1 HU Guo-hua1 ZHAN Ying-ce1 ZHAO Jin-xing1 ZHANG Yu-xian1
(1.College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China; 2.Jianshan Farm of Heilongjiang Province, Nenjiang 161442, China )
Keywords:
Soybean Topsoil treatment Water stability aggregate Yield
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2018.02.0251
Abstract:
In order to demonstrate the effect of conventional tillage system with topsoil treatment on the soil physical properties and soybean yield, adopting the method of regional contrast, setting two treatments(T1 represents local conventional tillage measures, T2 represents conventional tillage measures + topsoil soil crushing treatment) to analyze the influence on soil temperature and humidity, the bulk density, porosity, water stability, the aggregate in 0-30 cm soil depth and soybean yield. The results showed that T2 treatment significantly decreased 0-10 cm soil bulk density with a decline of 6% to 13.8%, significantly increased the porosity of soil layer between 0-10 cm, with 3.83% to 8.40%, reduced 5-15 cm soil temperature with a decline of 0.2 to 1.3 centigrade, improve 5-15 cm soil moisture with an increase from 0.1% to 1.5%, significantly increase the number of large aggregate (R>0.25 mm) by 9.02% to 20.30%. The mean weight diameter(MWD) and the geometric mean diameter(GMD) of soil water stability agglomeration increased by 4.25% to 6.58% and 28.4% to 30.3% respectively, while soybean yield increased by 6.24%. The results showed that topsoil crushing treatment could reduce topsoil bulk density, increase topsoil porosity, increase soil bulk aggregate number, increase soil water stability and provide a better soil environment for crop growth.

References:

[1]彭新华, 张斌, 赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展[J]. 土壤学报, 2004, 41(4): 6218-6231. (Peng X H, Zhang B, Zhao Q G. A Review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 2004, 41(4): 6218-6231.)
[2]丁启朔. 耕作力学研究的土壤结构及其评价方法[D]. 南京: 南京农业大学, 2006. (Ding Q S. Assessment of soil structure for soil tillage research[D]. Nanjing: Nanjing Agricultural University, 2006.)
[3]王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415-421. (Wang Q K, Wang S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415-421.)
[4]Six J, Elliot E T, Paustian K. Soil structure and soil organic mater: II. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 2000, 64: 1042-1049.?
[5]李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014, 35(12): 4696-4704. (Li J L, Jiang C S, Hao Q J. Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain[J]. Environmental Science, 2014, 35(12): 4696-4704.)
[6]Puget P, Chenu C, Balesdent J. Dynamic of soil organic matter associated with particle-size fractions of water-stable aggregate[J]. European Journal of Soil Science, 2000, 51(4): 595-605.?
[7]梁爱珍, 杨学明, 范如芹, 等. 免耕对东北黑土水稳性团聚体中有机碳分配的短期效应[J]. 中国农业科学, 2009, 42(8): 2801-2808. (Liang A Z, Yang X M, Fan R Q, et al. Short-term impacts of no tillage on soil organic carbon associated with water-stable aggregates in black soil of Northeast China[J]. Scientia Agricultura Sinica, 2009, 42(8): 2801-2808.)
[8]江恒, 韩晓增, 邹文秀, 等. 黑土区短期免耕对大豆田土壤水分物理性质的影响[J]. 大豆科学, 2012, 31(3): 374-380. (Jiang H, Han X Z, Zou W X, et al. Effects of short-term no-tillage on soil moisture physical properties of soybean fields in black soil area[J]. Soybean Science, 2011, 31(3): 374-380.)
[9]马仁明, 蔡崇法, 李朝霞, 等. 前期土壤含水率对红壤团聚体稳定性及溅蚀的影响[J]. 农业工程学报, 2014, 30(3): 95-103. (Ma R M, Cai C F, Li C X, et al. Effect of soil moisture content on stability and spatter of red soil aggregate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 95-103.)
[10]Cambardella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soil[J]. Soil Science Society of America Journal, 1994, 58(1): 123-130.?
[11]周虎, 吕贻忠, 杨志臣, 等. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学, 2007, 40(9): 1973-1979. (Zhou H, Lyu Y Z, Yang Z C, et al. Effects of conservation tillage on soil aggregates in Huabei plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979.)
[12]Barreto R C, Madari B E, Maddock J E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil[J]. Agricultrue, Ecosystems & Environment, 2009, 132(3): 243-251.?
[13]Vepra Skas M J. Plant response mechanisms to soil compaction[C]//Wilkinson E R. Plant-Enviroment interaction. New York: Marcel Dekker Incorporated, 1997: 263-287.?
[14]曹立为. 耕层深度及土壤容重对大豆生长发育和产量的影响[D]. 哈尔滨: 东北农业大学, 2015. (Cao L W. The effect of topsoil depth and bulk density on soybean growth and yield[D]. Harbin: Northeast Agricultural University, 2015. )
[15]Arshad M A, Coen G M. Characterization of soil quality:Physical and chemical criteria[J]. American Journal of Alternative Agriculture, 1992, 7(1-2): 25-31.?
[16]王珍, 冯浩. 秸秆不同还田方式对土壤结构及土壤蒸发特性的影响[J]. 水土保持学报, 2009, 23(6): 224-228. (Wang Z, Feng H. Study on the influence of different straw-returning manners on soil[J]. Journal of Soil and Water Conservation, 2009, 23(6): 224-228.)
[17]Six J, Bossuyt H, Degryze S, et al. A history of research on the link between(micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79: 7-31.?
[18]唐晓红, 邵景安, 高明, 等. 保护性耕作对紫色水稻土团聚体组成和有机碳储量的影响[J]. 应用生态学报, 2007(5): 1029-1034. (Tang X H, Shao J A, Gao M, et al. Effects of conservational tillage on aggregate composition and organic carbon storage in pur-plepaddy soil[J]. Chinese Journal of Applied Ecology, 2007(5): 1029-1034.)
[19]张旭辉, 李恋卿, 潘根兴. 不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J]. 生态学杂志, 2001,20(2): 16-19. (Zhang X H, Li L Q, Pan G X. Effect of different crop rotation systems on the aggregates and their SOC accumulation in paludalfs in North Huai Region,China[J]. Chinese Journal of Ecology, 2001,20(2): 16-19. )
[20]李恋卿, 潘根兴, 张旭辉. 退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化[J]. 土壤通报, 2000(5): 193-195. (Li L Q, Pan G X, Zhang X H. Changes in organic carbon storage in aggregates of the surface horizon in a degraded Paleudlt upon vegetation recovery[J]. Chinese Journal of Soil Science, 2000(5): 193-195.)
[21]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33: 141-163.?
[22]苏静, 赵世伟. 土壤团聚体稳定性评价方法比较[J]. 水土保持学报, 2009, 29(5): 114-117. (Su J, Zhao S W. Comparison of the analysis methods for soil aggregate stability[J]. Bulletin of Soil and Water Conservation, 2009, 29(5): 114-117. )
[23]严波, 贾志宽, 韩清芳, 等. 不同耕作方式对宁南旱地土壤团聚体的影响[J]. 干旱地区农业研究, 2010, 28(3): 58-63. (Yan B, Jia Z K, Han Q F, et al. Effects of different tillage on soil aggregates in the arid areas of South Ningxia[J]. Agricultural Research in the Arid Areas, 2010, 28(3): 58-63. )
[24]闫峰陵, 史志华, 蔡崇法, 等. 红壤表土团聚体稳定性对坡面侵蚀的影响[J]. 土壤学报, 2007, 44(4): 577-583. (Yan F L, Shi Z H, Cai C F, et al. Effects of topsoil aggregate stability on soil erosion at hillslope on ultisoils[J]. Acta Pedologica Sinica, 2007, 44(4): 577-583. )
[25]刘文利, 吴景贵, 傅民杰, 等. 种植年限对果园土壤团聚体分布与稳定性的影响[J]. 水土保持学报, 2014, 28(1): 129-135. (Liu W L, Wu J G, Fu M J, et al. Effect of different cultivation years on composition and stability of soil aggregate fraction in orchard[J]. Journal of Soil and Water Conservation, 2014, 28(1): 129-135. )
[26]Nimmo J R, Perkins K S. Aggregate stability and size distribution[J]. Methods of Soil Analysis: Part 4 Physical Methods, 2002, 4: 317-328.

Memo

Memo:
-
Last Update: 2018-04-02