|Table of Contents|

Effect of Heat Treatment Conditions on Gel Formation Ability of Soybean Protein Isolate(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年01期
Page:
141-148
Research Field:
Publishing date:

Info

Title:
Effect of Heat Treatment Conditions on Gel Formation Ability of Soybean Protein Isolate
Author(s):
YANG Lan 1 CHENG Yu-liang 12 GUO Ya-hui 12 XIE Yun-fei 12 YAO Wei-rong 12 QIAN He 12
(1.School of Food Science/State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2.International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China)
Keywords:
Gel strength Degree of denaturation Surface properties Secondary structure
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2018.01.0141
Abstract:
In this paper, we studied the effects of different heat treatment conditions on the gel formation ability of soybean protein isolate and described the relationship between them. The denaturation degree, secondary structure and gel properties of protein samples were analyzed by thermal analysis, circular dichroism, texture determination and SDS-PAGE. The results showed that the complete denaturation equation of 7S and 11S components in SPI were y=3.784 12×10 13x -6.521 6, and y=2.925 07×10 11x -4.818 1. The gel strength and water holding capacity were 25.1 g and 93% heated for 30 and 50 min at 95℃, respectively. The gel strength and water holding capacity increased firstly and then decreased with the increasing of temperature and time. The surface hydrophobicity and surface mercapto content were 364.4 ± 23.76 and 6.936 ± 0.050 68 μM?g -1, respectively. The results of surface properties showed that the decrease of gel formation ability was due to the fact that the protein molecules could be re-embed part of the hydrophobic region, resulting in declining in the number of acting groups. In this study, the heat treatment conditions and the fitting equation of the gel strength and water holding capacity were established, which provided reference for the preparation of different SPI gels, and provided some guidance for the process parameters of the cooking process in the industrial production of long-lasting tofu.

References:

[1] 刘頔, 赵晓燕, 符力丹. 大豆蛋白中7S与11S球蛋白的研究进展[J]. 食品研究与开发, 2016(17): 201-204. (Liu D, Zhao X Y, Fu L D. Research progress of 7S and 11S globulin in soybean protein[J]. Food Research and Development, 2016 (17): 201-204.)

[2] 代佼, 姚灿. 壳低聚糖作为豆腐凝固剂研究进展[J]. 粮食与油脂, 2009, 22(8): 42-44. (Dai J, Yao C. Research progress of chitooligosaccharides as tofu coagulant[J]. Cereals and Oils, 2009, 22(8): 42-44.)
[3] Liu H, Meng K. Effect of microwave heating on the viscoelastic property and microstructure of soy protein isolate gel[J]. Journal of Texture Studies, 2011(47):1-9.
[4] 刘昱彤, 钱和. 不同加工条件对全豆豆腐凝胶强度的影响[J]. 食品工业科技, 2013,34(5):126-129.(Liu Y T, Qian H. Effect of different processing conditions on the gel strength of whole bean tofu[J]. Food Industry Technology, 2013, 34 (5): 126-129.)
?[5] 李里特, 汪立君, 李再贵, 等. 大豆蛋白热变性程度对豆腐品质的影响注[J]. 中国粮油学报, 2002,17(1):1-4. (Li L T, Wang L J, Li Z G, et al. Effect of heat denaturation of soy protein on the quality of tofu [J]. Journal of the Chinese Cereals and Oils Association, 2002,17 (1): 1-4)
[6] Yuan Y, Wan Z, Yin S, et al. Characterization of complexes of soy protein and chitosan heated at low pH[J]. LWT - Food Science and Technology, 2013, 50(2):657-664.
[7] 沈兰, 王昌盛, 唐传核. 高压微射流处理对大豆分离蛋白构象及功能特性的影响[J]. 食品科学, 2012, 33(3):72-76.(Shen L, Wang C S. Effect of high pressure micro-jet processing on conformation and functional properties of soybean protein isolate[J]. Food Science, 2012, 33 (3): 72-76.)
?[8] Huang Y, Hua Y, Qiu A. Soybean protein aggregation induced by lipoxygenase catalyzed linoleic acid oxidation[J]. Food Research International, 2006, 39(2): 240-249.
?[9] 齐宝坤, 李杨, 王中江, 等. 不同品种大豆分离蛋白Zeta电位和粒径分布与表面疏水性的关系[J]. 食品科学, 2017, 38(3):114-118. (Qi B K, Li Y, Wang Z J, et al. Relationship between Zeta potential and particle size distribution and surface hydrophobicity of different soybean isolates[J]. Food Science, 2017, 38(3): 114-118.)
[10]王健, 徐晔晔, 于洁, 等. 热处理对大豆蛋白柔性与结构关系的影响[J]. 食品科学, 2017:1-9. (Wang J, Xu Y Y, Yu J, et al. Effects of heat treatment on the relationship between flexibility and structure of soy protein [J]. Food Science, 2017: 1-9.
[11]欧仕益, 郭乾初, 包惠燕, 等. 豆奶蛋白质中琉基含量的测定[J]. 中国食品学报, 2003, 3(2):59-62.(Ou S Y, Guo Q C, Bao H Y, et al. Determination of soybean milk protein contents[J]. Chinese Journal of Food Science, 2003, 3(2): 59-62.)
[12]吴海波, 齐宝坤, 江连洲, 等. 大豆分离蛋白热性质及其空间构象对表面疏水性的影响[J]. 中国粮油学报, 2014, 29(10): 42-46.(Wu H B, Qi B K, Jiang L Z, et al. Effect of thermal properties and spatial conformation of soy protein isolate on surface hydrophobicity[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(10): 42-46.)
[13]刘西海. 金属离子对蛋清蛋白质结构的影响研究[J]. 中国家禽, 2012, 34(1): 27-31.(Liu X H. Effects of metalions on protein structure of egg white [J]. Chinese Poultry, 2012, 34(1): 27-31.)
[14]陈勇, 王晶, 江连洲, 等. 不同辐照剂量对红豆分离蛋白结构及特性的影响[J]. 中国粮油学报, 2015, 30(4):39-43.(Chen Y, Wang J, Jiang L Z, et al. Effects of different irradiation doses on structure and characteristics of red bean protein isolate [J] .Journal of the Chinese Cereals and Oils Association, 2015, 34(4): 39-43.)
[15]陈振家, 施小迪, 杜昱蒙, 等. 不同热处理大豆分离蛋白凝胶冻藏特性[J]. 农业工程学报, 2016, 32(11): 283-289. (Chen Z J, Shi X D, Du Y M, et al. Development of gel-frozen characteristics of different heat-treated soybean protein isolate [J]. Journal of Agricultural Engineering, 2016, 32(11): 283-289.)
[16]Han M, Zhang Y, Fei Y, et al. Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel[J]. European Food Research and Technology, 2009, 228(4): 665-670.
[17]陈立德. 肌原纤维蛋白凝胶作用力影响因素的研究[D]. 重庆: 西南大学, 2010. (Chen L D. Myogenic fibrin gel force factors[D]. Chongqing: Southwest University, 2010.)
[18]Peng X, Guo S. Texture characteristics of soymilk gels formed by lactic fermentation: A comparison of soymilk prepared by blanching soybeans under different temperatures[J]. Food Hydrocolloids, 2015,43:58-65.
[19]李颖超. 加工处理对花生致敏原的影响及其机理[D]. 重庆: 江南大学, 2016. (Li Y C. Effect of processing on peanut allergen and its mechanism[D]. Chongqing: Jiangnan University, 2016)
[20]张青娈, 翟爱华, 杨盛楠. 不同加热条件对内酯豆腐品质的影响[J]. 黑龙江八一农垦大学学报, 2016, 28(3): 56-59. (Zhang Q L, Zhai A H, Yang S N. Effects of different heating conditions on the quality of lactone tofu [J]. Journal of Heilongjiang August First Land Reclamation University, 2016, 28(3): 56-59.)
[21]姜梅. 超高压均质和热处理对豆乳、豆腐和豆腐皮特性的影响[D]. 南京: 南京农业大学, 2013.(Jiang M. Effect of ultra-high pressure homogenization and heat treatment on the properties of soymilk, tofu and tofu skin [D]. Nanjing: Nanjing Agricultural University, 2013.)
[22]郑凤荣, 于美恒. 黑豆大豆复合豆腐工艺研究[J]. 食品研究与开发, 2015(17):83-85. (Zheng F R, Yu M H. Study on the technology of black bean and soybean compound tofu[J]. Food Research and Development, 2015 (17): 83-85.)
[23]李小雅, 许慧, 江杨娟, 等. 加工工艺对北方豆腐品质特性的影响[J]. 食品科学, 2017, 38(6): 261-266. (Li X Y, Xu H, Jiang Y J, et al. Effects of processing technology on quality characteristics of tofu in North China [J]. Food Science, 2017, 38(6): 261-266.)
[24]孙小鲁, 顾振宇, 杨玥熹. 石膏豆腐凝胶特性的研究[J]. 现代食品科技, 2017, 33(3):133-138. (Sun X H, Gu Z Y, Yang Y X. Studies on the gels characteristics of gypsum tofu[J]. Modern Food Science and Technology, 2017 (03): 133-138.)
[25]Mohan M, Ramachandran D, Sankar T V. Functional properties of Rohu(Labeo rohita) proteins during iced storage[J]. Food Research International, 2006, 39(8): 847-854.
[26]郭丽萍, 熊双丽, 黄业传. 超高压结合热处理对猪肉蛋白质相互作用力及结构的影响[J]. 现代食品科技, 2016, 32(2):196-204.(Guo L P, Xiong S L, Huang Y C. Effect of ultrahigh pressure combined heat treatment on interaction force and structure of pork proteins[J]. Modern Food Science and Technology, 2016, 32(2): 196-204.)
[27]夏珂. 热处理对苦荞蛋白结构及功能特性的影响[D]. 上海: 上海应用技术大学, 2016. (Xia K. Effect of heat treatment on the structure and functional properties of tartary buckwheat protein[D]. Shanghai: Shanghai University of Technology, 2016.)
[28]Vivian J T, Callis P R. Mechanisms of tryptophan fluorescence shifts in proteins[J]. Biophysical Journal, 2001, 80(5): 2093-2109.
[29]Mills E N C, Huang L, Noel T R, et al. Formation of thermally induced aggregates of the soya globulin v-conglycinin[J]. Biochimica et Biophysica Acta: Protein Structure and Molecular Enzymology, 2001, 1547(2): 339-350.
[30]吴伟, 蔡勇建, 林亲录, 等. 脱脂豆粕预处理对大豆β-伴球蛋白结构的影响[J]. 现代食品科技, 2014, 30(7):131-135.(Wu W, Cai Y J, Lin Q L, et al. Effects of defatted soybean meal pretreatment on the structure of β-conglycinin in soybean[J]. Modern Food Science and Technology, 2014, 30(7): 131-135.)
[31]Lakemond C M M, de Jongh H H J, Paques M, et al. Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation[J]. Food Hydrocolloids, 2003, 17(3): 365-377.
[32]姜振峰, 赫卫, 汪洋, 等. 大豆种子7S、11S球蛋白及7S球蛋白亚基的研究[J]. 中国油料作物学报, 2007(2):138-141. (Jiang Z F, He W, Wang Y, et al. Studies on 7S, 11S globulin and 7S globulin subunits of soybean seeds[J] .Chinese Journal of Oil Crop Sciences, 2007(2): 138-141.)

Memo

Memo:
-
Last Update: 2018-03-14