|Table of Contents|

Study of Mining Excellent Genes in Glycine soja by F1 Family Association Population(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2018年01期
Page:
50-57
Research Field:
Publishing date:

Info

Title:
Study of Mining Excellent Genes in Glycine soja by F1 Family Association Population
Author(s):
CHANG Wei WANG Juan YU Yang CHEN Ji-bao
(College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China)
Keywords:
Glycine soja Excellent genes F1 family association population GWAS
PACS:
565.1
DOI:
10.11861/j.issn.1000-9841.2018.01.0050
Abstract:
In this study, we evaluated the detection effect of F1 family association population based on soybean HapMap data, and made a case study of soybean pod borer resistance. The value of genotype and phenotype of both inbred line population and F1 family association population were simulated under 4 different conditions, including genetic models(complete dominance and incomplete dominance), the number of genes, population size and heritability. Based on the simulation results, the detection effect of the two populations in GWAS was compared. As a result, the average numbers of detected genes by F1 family association population in 4 different genetic models were 3.82, 3.82, 3.80 and 3.78, respectively, which were significantly higher than those of inbred line population(2.08, 2.09, 2.08 and 1.87). The result under different conditions also showed that the detection effect of both population were increased with the increasing of population size and heritability, reduced with the increasing of genes number, and the detection effect of F1 population is higher than that of inbred population under the same conditions. Constructing the F1 family association population by Top Cross could effectively reduce the interference of unfavorable allele, thereby make the F1 population a better choice for genome-wide association study when mining the excellent alleles in Glycine soja.

References:

[1] 徐豹. 中国野生大豆(G.soja)研究十年[J]. 吉林农业科学, 1989, 1: 5-13. (Xu B. A ten years studying of Glycine soja(G.soja) in China[J]. Journal of Jilin Agricultural Sciences, 1989, 1: 5-13.)

[2] Pazdernik D L, Hartman G L, Huang Y H, et al. A greenhouse technique for assessing Phytophthora root rot resistance in Glycine max and G.soja[J]. Plant Disease, 1997, 81(10): 1112-1114.
[3] Wang D, Diers B W, Arelli P R, et al. Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916[J]. Theoretical and Applied Genetics, 2001, 103(4): 561-566.
[4] Shi H. Studies on the drought resistance of wild soybean germplasm[J]. Soybean Science, 2003, 22(4): 5.
[5] Lee J D, Shannon J G, Vuong T D, et al. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463[J]. Journal of Heredity, 2009: esp027.
[6] 马淑梅, 韩新华. 野生大豆资源对灰斑病抗性鉴定与评价[J]. 中国农学通报, 2015, 31(30): 86-91. (Ma S M, Han X H. Evaluation and identification of resistance of wild soybean germplasm to Cercospora sojina[J]. Chinese Agricultural Science Bulletin, 2015, 31(30): 86-91.)
[7] Concibido V, La Vallee B, Mclaird P, et al. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars[J]. Theoretical and Applied Genetics, 2003, 106(4): 575-582.
[8] Song Q, Hyten D L, Jia G, et al. Development and evaluation of Soy SNP50K, a high-density genotyping array for soybean[J]. PLoS One, 2013, 8(1): e54985.
[9] Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses[J]. American Journal of Human Genetics, 2007, 81(3): 559-575.
[10]赵桂云, 李红丽, 王宇, 等. 大豆抗大豆食心虫机制研究进展[J]. 吉林农业, 2013(3): 73,72. (Zhao G Y, Li H L, Wang Y, et al. Advances in study on the mechanism of pod borer resistance in soybean[J]. Jilin Agriculture, 2013(3): 73,72.)
[11]裴颜龙, 王岚, 葛颂, 等. 野生大豆遗传多样性研究Ⅰ: 4个天然居群等位酶水平的分析[J]. 大豆科学, 1996, 25(4): 302-309. (Pei Y L, Wang L, Ge S, et al. Study on the genetic diversity of wild soybeanⅠ: Allozyme analysis of four natural populations[J]. Soybean Science, 1996, 25(4): 302-309.)
[12]Sesay S, Ojo D K, Ariyo O J, et al. Genetic variability, heritability and genetic advance studies in top-cross and three-way cross maize (Zea mays L.) hybrids[J]. Maydica, 2016, 61(2): M12, 1-7.
[13]周坤华, 雷刚, 方荣, 等. 利用辣椒种间F2和F2∶3两个群体进行其主要农艺性状QTL分析[J]. 园艺学报, 2015, 42(5): 879-889. (Zhou K H, Lei G, Fang R, et al. Detection of QTLs for main agronomic traits using F2 and F2∶3 inter specific populations in pepper[J]. Acta Horticulturae Sinical, 2015, 42(5): 879-889.)
[14]Wang H, Smith K P, Combs E, et al. Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm[J]. Theoretical and Applied Genetics, 2012, 124(1): 111-124.
[15]何小红, 徐辰武, 蒯建敏, 等. 数量性状基因作图精度的主要影响因子[J]. 作物学报, 2001, 28(4): 469-475. (He X H, Xu C W, Kuai J M, et al. Principal factors affecting the power of detection and accuracy of QTL mapping[J]. Acta Agronomica Sinica, 2001, 28(4): 469-475.)
[16]赵洪波, 李明丽, 鲁绍雄, 等. 群体规模和性状遗传力对F2设计下QTL定位效果的影响[J]. 云南农业大学学报, 2007, 22(2): 159-163. (Zhao H B, Li M L, Lu S X, et al. Study on the effects of population size and trait heritability on the accuracy of QTL mapping under F2 design[J]. Journal of Yunnan Agricultural University, 2007, 22(2): 159-163.)
[17]王孝义, 李明丽, 刘刚, 等. 基因型选择和基因辅助BLUP对不同遗传力性状的选择效果[J]. 云南农业大学学报(自然科学), 2013, 28(6): 796-803. (Wang X Y, Li M L, Liu G, Lu S X. Effects of genotype selection and gene-assisted BLUP forselection on the traits with different heritabilities[J]. Journal of Yunnan Agricultural University (Natural Sciences), 2013, 28(6): 796-803.)
[18]王军, 周美学, 黄祖六, 等. 大麦DH群体若干数量性状的遗传分析[J]. 扬州大学学报(农业与生命科学版), 2006, 27(3): 65-69. (Wang J, Zhou M X, Huang Z L, et al. Genetic analysis of quantitative traits of a doubled haploid population in barley[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2006, 27(3): 65-69.)

Memo

Memo:
-
Last Update: 2018-03-13