|Table of Contents|

Ancestors Tracking and Genetic Dissection for Released Soybean Cultivar Heinong 48or; Genetic contribution rate(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年05期
Page:
679-684
Research Field:
Publishing date:

Info

Title:
Ancestors Tracking and Genetic Dissection for Released Soybean Cultivar Heinong 48or; Genetic contribution rate
Author(s):
LIU Xiu-lin12 ZHANG Bi-xian2 LIU Xin-lei2 LUAN Xiao-yan2 WANG Guang-jin2 WU Jun-jiang23
(1.Post-doctoral Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; 2.Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; 3.Key Laboratory of Soybean Cultivation, Ministry of Agriculture, Harbin 150086, China)
Keywords:
Soybean Heinong 48 Ancest
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.05.0679
Abstract:
Heinong 48 bred by Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences in 2004, it is a high protein and high yield soybean cultivar.Based on ancestors tracking and pedigree tree building, we analyzed parent geographical origin and nuclear genetic contribution of Heinong 48, and reveal its genetic basis to provide a reference for soybean breeding parent selection and use.The result showed that Heinong 48 belongs to Silihuang cytoplasm family, transfer process was: Silihuang→Huangbaozhu→Mancangjin→Suinong 3→Suinong 4→Heinong 40→Heinong 48. Nuclear genes were provided by the 15 ancestors, including Jinyuan, Silihuang, Baimei, Pingdihuang, Keshansilijia, Shishengchangye, Yongfengdou, Jiamusitujiazi, Xiongyuexiaohuangdou, Tongzhouxiaohuangdou, Xiaolihuang, Amsoy, Anoka, Liuyeqi and Dongnong20.Nuclear genetic contribution rate was 7.04%, 7.04%, 5.08%, 7.03%, 5.47%, 12.50%, 7.04%,1.95%, 2.34%, 3.13%, 1.56%, 6.25%, 6.25%,1.56% and 0.78%, respectively. In the parent selection process, the local cultivars with a wide adaptation were often selected as the female, and the bridge parents with the geographical and ecological distant gene were used as the male.

References:

[1]王玉莲, 宗春美, 王燕平, 等.浅析大豆育成品种系谱分析[J]. 大豆科技, 2014(2): 43-44.(Wang Y L, Zong C M, Wang Y P, et al. Shallow of soybean varieties bred pedigree analysis [J]. Soybean Science and Technology, 2014(2): 43-44.)

[2]张子金. 中国大豆品种志[M]. 北京:中国农业出版社, 1985: 39-239.(Zhang Z J. The soybean varieties [M]. Beijing: The Agriculture Press of China, 1985: 39-239.)?
[3]盖钧镒, 熊冬金,赵团结. 中国大豆育成品种系谱与种质基础[M]. 北京:中国农业出版社, 2015. (Gai J Y, Xiong D J, Zhao T J. The pedigress and germplasm bases of soybean cultivars released in China (1923-2005) [M]. Beijing: The Agriculture Press of China, 2015.)
[4]白艳凤, 王玉莲, 王燕平, 等. 牡豆8号祖先亲本追溯及遗传解析[J]. 植物资源学报, 2015, 16(3): 485-489. (Bai Y F, Wang Y L, Wang Y P, et al. Ancestors tracking and genetic dissection for released soybean cultivar Mudou No. 8 [J]. Journal of Plant Genetic Resources, 2015, 16(3): 485-489.)
[5]郝世涛, 牛若超. 克山大豆种质及利用研究[J]. 大豆通报, 1996(5): 23-25. (Hao S T, Niu R C. Make use of the research of Keshan soybean [J]. Soybean Bulletin, 1996(5): 23-25.)
[6]陈维元, 吕德昌, 姜成喜, 等. 绥农号大豆血缘关系分析[J]. 黑龙江农业科学, 2004(4): 9-12. (Chen W Y, Lyu D C, Jiang C X, et al. Pedigree analysis of soybean cultivars vamed by Suinong [J]. Heilongjiang Agricultural Sciences, 2004(4):9-12.)
[7]秦君,李英慧,刘章雄,等. 用SSR分子标记解析大豆品种绥农14与系谱亲本间的遗传关系[J]. 中国农业科学,2008,41(12): 3999-4007. (Qin J, Li Y H, Liu Z X, et al. Genetic relationship among parents of elite soybean (Glycine max) cultivars Suinong 14 pedigree revealed by SSR markers[J]. Scientia Agricultura Sinica, 2008, 41(12): 3999-4007.)
[8]顾德军, 付连舜, 杨德忠. 铁丰系列大豆品种选育与应用概况[J]. 杂粮作物, 2007, 27(2):98-100. (Gu D J, Fu L S, Yang D Z. Selection and utilization of Tiefeng series soybean variety [J]. Rain Fed Crops, 2007, 27(2): 98-100.)
[9]郭娟娟, 常汝镇, 章建新, 等.日本大豆种质十胜长叶对我国大豆育成品种的遗传分析[J]. 大豆科学, 2007, 26 (3): 807-812.(Guo J J, Chang R Z, Zhang J X, et al. Contribution of Japanese soybean germplasm Tokachi-Nagaha to Chinese to soybean [J]. Soybean Science, 2007, 26 (3): 807-812.)
[10]盖钧镒, 赵团结. 中国大豆育种的核心祖先亲本分析[J]. 南京农业大学学报, 2001, 24(2): 20-23. (Gai J Y, Zhao T J. The core ancestors of soybean cultivars in China [J]. Journal of Nanjing Agricultural University, 2001, 24(2): 20-23.)
[11]郭泰, 王志新, 吴秀红, 等. 国外大豆资源利用与小粒大豆品种创新[J].中国农学通报, 2009, 25(22): 306-310. (Guo T, Wang Z X, Wu X H, et al. Foreign soybean resources utilization and small grain soybean variety innovation [J]. Chinese Agricultural Science Bulletin, 2009, 25(22): 306-310.)
[12]张煜, 李娜娜, 丁汉凤, 等. 野生大豆种质资源及创新应用研究进展[J]. 山东农业科学, 2012, 44(4):31-35. (Zhang Y, Li N N, Ding H F, et al. Research progress of wild soybean germplasms and utilization [J]. Shandong Agricultural Sciences, 2012, 44(4):31-35.)
[13]盖钧镒, 熊冬金, 赵团结. 1923-2005年中国大豆育成品种种质的地理来源及其遗传贡献[J]. 作物学报, 2008, 34(2): 175-183. (Gai J Y, Xiong D J, Zhao T J. Geographical sources of germplasm and their nuclear and cytoplasmic contribution to soybean cultivars released during 1923 to 2005 in China [J]. Acta Agronomica Sinica, 2008, 34(2): 175-183.)
[14]曹永强, 宋书宏, 王文斌, 等. 拓宽大豆育种遗传基础研究进展[J]. 辽宁农业科学, 2005 (6): 34-36. (Cao Y Q, Song S H, Wang W B, et al. Research progress of broadening the genetic basis of soybean [J]. Liaoning Agricultural Sciences, 2005 (6): 34-36.)
[15]金晓飞, 曹凤臣, 徐丽娟, 等. 浅谈利用野生大豆创制育种资源和新品种[J]. 东北农业科学, 2017, 42(1): 12-15. (Jin X F, Cao F C, Xu L J, et al. A brief discussion on use of wild soybean to create breeding resources and varieties [J]. Journal of Northeast Agricultural Sciences, 2017, 42(1): 12-13.)
[16]张国栋. 黑龙江省大豆推广品种的细胞质来源初步研究[J].大豆科学, 1987, 6(4): 313-316. (Zhang G D. The cytoplasm sources research of soybean varieties in Heilongjiang province [J]. Soybean Science, 1987, 6(4): 313-316.)
[17]王彩洁, 孙石, 吴宝美, 等. 20世纪40年代以来中国大面积种植大豆品种的系谱分析[J]. 中国油料作物学报, 2013, 35(3): 246-252.(Wang C J, Sun S, Wu B M, et al. Pedigree analysis of the most planted soybean cultivars in China since 1940s [J]. Chinese Journal of Oil Crop Sciences, 2013, 35(3): 246-252.)
[18]杨春燕, 姚利波, 刘兵强, 等. 国内外大豆品质育种研究方法与最新进展[J]. 华北农学报, 2009, 24(S1):75-78. (Yang C Y, Yao L B, Liu B Q, et al. Advance on soybean quality breeding in China and abroad [J]. Acta Agricultura Boreali-Sinica, 2009, 24(S1):75-78.) [19]张金巍,韩粉霞,孙君明, 等.大豆微核心种质蛋白质及脂肪含量的遗传变异[J].植物遗传资源学报, 2014, 15(2): 405-410. (Zhang J W,Han F X, Sun J M, et al. Genetic variation of protein and fat content in soybean mini core collections [J]. Journal of Plant Genetic Resources, 2014, 15(2): 405-410.)
[20]刘顺湖, 周瑞宝, 盖钧镒.大豆蛋白质有关性状遗传的分离分析[J]. 作物学报, 2009, 35(11): 1958-1966. (Liu S H, Zhou R B, Gai J Y. Segregation analysis for inheritance of protein related traits in soybean [J]. Acta Agronomica Sinica, 2009, 35(11): 1958-1966.)
[21]Krishnan H B, Oehrle N W, Natarajan S S. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: A case study using Glycine max[J]. Proteomics, 2009, 9(11): 3174-3188.
[22]Withana-gamage T S, Hegedus D D, Qiu X, et al. Characterization of Arabidopsis thaliana-lines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy [J]. Journal of Agricultural and Food Chemistry, 2013, 61(4): 901-912.
[23]Wang J, Liu L, Guo Y, et al. A dominant locus, qBSC-1, controls β subunit content of seed storage protein in soybean (Glycine max L)[J]. Journal of Integrative Agriculture, 2014, 13(9): 1854-1864.?
[24]Lotan T, Ohto M A, Yee K M, et al.Arabidopsis leafy cotyledon1 is sufficient to induce embryo development in vegetative cells [J]. Cell, 1998, 93(7): 1195-1205.
[25]Soderman E M, Brocard I M, Lynch T J, et al.Regulation and function of the Arabidopsis ABA-insensitive 4 gene in seed and abscisic acid response signaling networks [J]. Plant Physiology, 2000, 124(4): 1752-1765.
[26]Zhang Y, Cao G, Qu L J, et al. Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis[J]. Plant Cell Reports, 2009, 28(3): 337-346.
[27]Crowe A J, Abenes M, Plant A, et al.The seed-specific transactivator, ABI3, induces oleosin gene expression [J]. Plant Science, 2000, 151(2): 171-181.
[28]Parcy F, Valon C, Raynal M, et al. Regulation of gene expression programs during Arabidopsis-seed development: Roles of the ABI3?locus and of endogenous abscisic acid [J]. The Plant Cell, 1994, 6(11): 1567-1582.?
[29]Kirik V, Kolle K, Balzer H J, et al. Two new oleosin isoforms with altered expression patterns in seeds of the Arabidopsis-mutant fus3 [J]. Plant Molecular Biology, 1996, 31(2): 413-417.

Memo

Memo:
-
Last Update: 2017-10-29