|Table of Contents|

Progress of Research on Tolerance to Low-phosphorus Stress in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年04期
Page:
639-644
Research Field:
Publishing date:

Info

Title:
Progress of Research on Tolerance to Low-phosphorus Stress in Soybean
Author(s):
LIU Hai-xu1 WU Jun-jiang2 WANG Jin-sheng2 LU Wen-cheng3 XU Peng-fei1 ZHANG Shu-zhen1
(1.Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Ministry of Education, Harbin 150030, China; 2.Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P.R. China, Harbin 150086, China; 3.Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China)
Keywords:
Tolerance to low phosphorus stress Soybean QTL
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.04.0639
Abstract:
Soybean is an important grain and oil crop in the world, and it is also the main source of high quality protein and animal feed protein. Soybean is one of the P-loving crops. Phosphorus is not only an important component of soybean genetic material, but also participates in physiological and biochemical processes such as enzymatic metabolism, metabolism, nodule nitrogen fixation and so on.Nearly one-half of the world′s arable land is in the state of phosphorus deficiency, and about two-thirds of the cultivated land in China is in phosphorus deficiency. Phosphorus stress is one of the most important factors limiting soybean yield. In this paper, the morphological changes, the physiological and biochemical responses of soybean, the construction of genetic map and the QTL mapping of soybean tolerance to low phosphorus were reviewed.The QTL mapping of soybean tolerance to low phosphorus was prospected, which would provide theoretic basis for improving the research advance on genetics and breeding of tolerance to low phosphorus stress.

References:

[1]Sample E C,Soper R J,Racz G J. Reaction of phosphate fertilizers in soils[J]. American Society of Agronomy,1980,263-310.

[2]刘建中,李振声,李继云. 利用植物自身潜力提高土壤中磷的生物有效性[J]. 生态农业研究,1994,2(1):16-23. (Liu J Z, Li Z S, Li J Y. Ytilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil[J]. Chinese Journal of Eco-research, 1994, 2(1):16-23)
[3]李继云,刘秀娣,周伟. 有效利用土壤营养养分元素的作物育种新技术研究[J]. 中国科学:B辑,1995,25(1):41-48. (Li J Y, Liu X D, Zhou W. Study of new crop breeding technology on effectively utilizing soil nutrition elements[J]. Science in China(Series B),1995,25(1):41-48.)
[4]Zhang D,Cheng H,Yu D Y,et al. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage[J]. Euphytica,2009,167:313-322.?
[5]王庆仁,李继云,李振声. 植物高效利用土壤难溶态磷研究动态及展望[J]. 植物营养与肥料学报,1998,4(2):107-116. (Wang Q R, Li J Y, Li Z S. Dynamics and prospect on studies of high acquisition of soil unavailable phosphorus by plants[J]. Plant Nutrition and Fertilizer Science, 1998, 4(2): 107-116.)
[6]Yan X L,Liao H,Beebe S E,et al. QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean[J]. Plant Soil,2004,265:17-29.
[7]丁洪,李生秀.大豆品种耐低磷和对磷肥效应的遗传差异[J]. 植物营养与肥料学报,1998,4(3):257-263. (Ding H, Li S X. Genetic difference of response of soybean cultivars to low phosphorus stress and phosphorus fertilizer[J]. Plant Nutrition and Fertilizer Science, 1998, 4(3): 257-263.)
[8]Shenoy V V,Kalagudi G M. Enhancing plant phosphorus use efficiency for sustainable cropping[J]. Biotechnology Advances,2005,23:501-513.
[9]耿雷跃,崔士友,张丹,等-大豆磷效率QTL定位及互作分析[J]. 大豆科学,2007,26(4):461-466. (Geng L Y, Cui S Y, Zhang D. et al. QTL mapping and epistasis analysis for p-efficiency in soybean[J]. Soybean Science, 2007, 26(4): 461-466).
[10]Huang C Y,Shirley N,Genc Y,et al. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA,IPS1,in barley[J]. Plant Physiology, 2011,156:1217-1229.?
[11]武兆云,郭娜,赵晋铭,等. 大豆苗期耐低磷主成分及隶属函数分析[J]. 大豆科学,2012,31(1):42-46.(Wu Z Y, Guo N, Zhao J M. et al. Principal components and membership function analysis of low phosphate tolerance at seedling stage in soybean[J]. Soybean Science, 2012, 31(1): 42-46.)
[12]李青松. 大豆磷高效品种的筛选及磷高效的生理机制研究[D]. 郑州:河南农业大学,2006:4-6. (Li Q S. Study on screening of soybean cultivars with high phosphoros efficiency and its physiological mechanism[D]. Zhengzhou: Henan Agricultural University,2006:4-6.
[13]Zhang Y L. Analysis of phosphorus nutrition efficiency of soybean genotypes with different phosphorus efficiency at blooming stage under low phosphorus stress [J]. Agricultural Science & Technology,2012,13(12):2544-2548.
[14]徐青萍,罗超云,廖红,等. 大豆不同品种对磷胁迫反应的研究[J]. 大豆科学,2003,22(2):108-114. (Xu Q P, Luo Y C, Liao H. et al. Study on the response of soybean varieties to P deficiency[J]. Soybean Science, 2003, 22(2): 108-114).
[15]王应祥,廖红,严小龙. 大豆适应低磷胁迫的机理初探[J]. 大豆科学,2003,22(3):208-212. (Wang Y X, Liao H, Yan X L. Preliminary studies on the mechanisms of soybean in adaptation to low P stress[J]. Soybean Science, 2003, 22(3): 208-202).
[16]Epstein E. Better crops for food[J]. Ciba Foundation Symposium,1983,97(2):61-68.
[17]吴俊江,马凤鸣,林浩,等. 不同磷效基因型大豆在生长关键时期根系形态变化的研究[J]. 大豆科学,2009,28(5):820-823. (Wu J J, Ma F M, Lin H, et al.Root morphology traits of soybean genotypes with different phosphorus efficiency at important growing stages[J]. Soybean Science, 2009, 28(5):820-823).
[18]Niu Y F,Chai R S,Jin G L,et al. Responses of root architecture development to low phosphorus availability:A review[J]. Annals of Botany,2012,112(2):391-408.?
[19]Lambers H,Raven J A,Shaver G R,et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology & Evolution,2008,23(2):95-103.
[20]刘婧琦,谢甫绨,敖雪,等. 磷对不同磷效率大豆品种光合生理和农艺性状的影响[J]. 大豆科学,2009,28(2):217-220. (Liu J Q, Xie F T, Ao X. et al. Effect of different phosphorus level on photosynthetic rate and agronomic traits between soybean cultivars with different phosphorus efficiency[J]. Soybean Science, 2009, 28(2): 217-220).
[21]Gilroy S,Jones D L. Through form to function:Root hair development and neutrient uptake[J]. Trends in Plant Science,2000,5:56-60.
[22]Fredeen A L,Raab T K,Rao I M,et al. Effects of phosphorus nutrition on photosynthesis in Glycine max (L) Merr[J]. Planta,1990,181(3):399-405.?
[23]Wang X. Reasons about flower and pod shedding of soybean and its technique countermeasure[J]Crop Cultivation,2007,1:40.
[24]vanSchaik P H,Probst A H. Effects of some environmental factors on flower production and reproductive efficiency in soybeans[J]. Agronomy Journal,1958,50(4):192-197.?
[25]Dominguez C,Hume D J. Flowering,abortion,and yield of early-maturing soybeans at three densities[J]. Agronomy Journal,1978,70(5):801-805.?
[26]Hansen W R,Shibles R.Seasonal log of the flowering and podding activity of field-grown soybeans[J]. Agronomy Journal,1978,70(1):47-50.?
[27]Keitaro Tawaraya, Ryota Horie, Takuro Shinano, et al. Metabolite profiling of soybean root exudates under phosphorus deficiency[J]. Journal of Soil Science and Plant Nutrition,2014,60:5,679-694.
[28]王树起,韩晓增,乔云发,等. 缺磷胁迫对大豆根瘤生长和结瘤固氮的影响[J]. 大豆科学,2009,28(6):1000-1003. (Wang S Q, Han X Z, Qiao Y F. et al. Nodule growth, nodulation and nitrogen fixation in soybean as affected by P deficiency stress[J]. Soybean Science, 2009, 28(6):1000-1003.)
[29]Rnegel Z. Genetic control of root exudation[J]. Plant Soil,2002,245:59-70.?
[30]沈宏,菊井森士,严小龙, 等.大豆根分泌物活化难溶性铝磷的研究[J]. 水土保持学报,2005,19(1):68-70. (Shen H, KIKUI S, Yan X L. et al. Mobilization of insoluble aluminum bound phosphate by soybean root exudates[J]. Journal of Soil and Water Conservation, 2005, 19(1):68-70.)[31]Shen H, Chen J, Wang Z, et al. Root plasma membrane H+ATPase is involved in the adaptation of soybean to phosphorus starvation[J]. Journal of Experimental Botany, 2006, 57(6):1353-1362.?
[32]Tang C,Han X Z,Qiao Y F,et al. Phosphorus deficiency does not enhance proton release by roots of soybean [Glycine max (L) Murr][J]. Environmental and Experimental Botany, 2009, 67(1):228-234.?
[33]Lipton D S,Blanchar R W,Blevins D G. Citrate,malate,and succinate concentration in exudates from P.sufficient and P.stressed Medicago sativa L. seedlings[J]. Plant Physiology,1987,85:315-317.?
[34]Ishikawa S,Adu-Gyamfi J J,Nakamura T,et al. Genotypic variability in phosphorus solubilizing activity of root exudates by pigeonpea grown in low-neutrient environments[J]. Plant Soil,2002,245:71-81.
[35]Wang B L,Tang X Y,Cheng L Y,et al. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin[J]. New Phytologist, 2010, 187(4):1112-1123.?
[36]Plaxton W C,Tran H T. Metabolic adaptations of phosphate-starved plants[J]. Plant Physiology,2011,156: 1006-1015.
[37]丁洪,李生秀,郭庆元,等. 酸性磷酸酶活性与大豆耐低磷能力的相关研究[J]. 植物营养与肥料学报,1997,3(2):123-128.(Ding H, Li S X, Guo Q Y.et al.Study on correlation between acid phosphatase activity and low phosphorus tolerance of soybean[J]. Plant Nutrition and Fertllizer Science,1997,3(2): 123-128.)
[38]Yan X L,Liao H. Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean[J]. Plant Physiology,2001,125:1901-1911.?
[39]Yun S J,Kaeppler S M. Induction of maize acid phosphatase activities under phosphorus starvation[J]. Plant Soil,2001,237:109-115.?
[40]高彬,曹翠玲,李涛. 乙烯对低磷胁迫下大豆根形态和生理特性的影响[J]. 大豆科学,2012,31(1):58-63. (Gao B, Cao C L, Li T. Effect of ethylene on morphology and physiological characteristic of soybean seedlings under low-phosphorus stress[J]. Soybean Science, 2012,31(1): 58-63).
[41]谷思玉,刘爽,王佳佳,等.不同基因型大豆对难溶性磷胁迫的生理响应[J]. 大豆科学,2012,31(3):411-415. (Gu S Y, Liu S, Wang J J, et al. Physiological response of different soybeans under sparingly soluble phosphate[J]. Soybean Sciencs, 2012,31(3): 411-415.)
[42]Kollist H,Jossier M,Laanemets K,et al. Anion channels in plant cells[J]. FEBS Journal,2011,278(22):4277-4292.[43]钟鹏,吴俊江,刘丽君,等. 低磷和干旱胁迫对不同基因型大豆光合生理特性的影响[J]. 大豆科学,2009,28(5):806-810. (Zhong P, Wu J J, Liu L J.et al. Effects of phosphorus deficiency and drought stress on photosynthetic characters in different genotypic soybeans[J]. Soybean Science, 2009, 28(5): 806-810.)[44]Li Y D,Wang Y J,Tong Y P,et al.QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.. Merr)[J]. Euphytica,2005,142(1-2):137-142
[45]崔世友,耿雷跃,孟庆长,等. 大豆苗期耐低磷性及其QTL定位[J]. 作物学报,2007,33(3):378-383.(Cui S Y, Geng L Y, Meng Q C, et al. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L) during seedling stage[J]. Acta Agronomica Sinica, 2007, 33(3): 378-383).
[46]Liang Q, Cheng X, Mei M, et al. QTL analysis of root traits as related to phosphorus efficiency in soybean[J]. Annals of Botany,2010,106:223-234.
[47]Zhang D,Liu C,Yu D Y,et al. Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission[J]. Plant Breeding,2010,129:243-249.
[48]Zhang D,Song H,Cheng H,et al. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress[J]. PLoS Genetics,2014,10(1):e1004061.
[49]King K E,Lauter N,Lin S F,et al. Evaluation and QTL mapping of phosphorus concentration in soybean seed[J]. Euphytica,2013,189(2):261-269.?
[50]Thornsberry J M,Goodman M M,Doebley J,et al. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nature Genetics,2001,28(3):286-289.?
[51]Flintarcia S A,Thuillet A C,Yu J,et al. Maize association population:A high-esolution platform for quantitative trait locus dissection[J]. The Plant Journal,2005,44(6):1054.1064.?
[52]Hirschhorn J N,Daly M J. Genome-wide association studies for common diseases and complex traits[J]. Nature Reviews Genetics,2005,6(2):95-108.
[53]Thornsberry J M,Goodman M M,Doebley J,et al. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nature Genetics,2001,28(3):286-289.?
[54]Palaisa K A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci[J]. The Plant Cell,2003,15(8):1795-1806.?
[55]Vollbrecht E,Springer P S,Goh L,et al. Architecture of floral branch systems in maize and related grasses[J]. Nature,2005,436(7054):1119-1126.
[56]Brachi B,Faure N,Horton M,et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature[J]. PLoS Genetics,2010,6(5):e1000940.?
[57]Farmoso A N,Zhao K,Clark R T,et al. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping[J]. PLoS Genetics,2011,7(8):e1002221.

Memo

Memo:
-
Last Update: 2017-08-14