|Table of Contents|

Identification of Drought Resistance to TaNHX2Transgenic Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年04期
Page:
519-524
Research Field:
Publishing date:

Info

Title:
Identification of Drought Resistance to TaNHX2Transgenic Soybean
Author(s):
ZHANG Xiao-ming1 XUE Yong-guo12 WANG Ping13 YU Xi-sen1 WANG Xun4 MENG Fan-li1
(1. College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2. Soybean Research Institute ,Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; 3. Information Center, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; 4. Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
Keywords:
Soybean TaNHX2 Agrobacterium-mediated method Transgenic Drought tolerance
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.04.0519
Abstract:
The TaNHX2 transgenic soybean T3 generation plants were used to study the phenotypic, physiological characteristics, photosynthesis, biomass and other changes under drought stress. The results showed that with the prolongation of drought time, the control was wilting, the transgenic plants kept green, and the water content in the leaves of the transgenic plants was higher than that of the control. However, there was no significant difference of chlorophyll content and soluble sugar in the transgenic plants. Proline and malondialdehyde content of transgenic plants were significantly lower than the control, SOD activity was higher than the control. The comprehensive evaluation showed that the transgenic soybean plants with TaNHX2 gene had obvious drought tolerance compared with the control.

References:

[1]王萍,高世庆,郭永来,等. 利用农杆菌介导将抗逆相关基因GmDREB导入大豆的研究[J]. 大豆科学,2008,27(1):47-51. (Wang P, Gao S Q, Guo Y L,et al. Transformation of stress resistance related gene GmDREB into soybean via Agrobacterium-mediation[J].Soybean Science, 2008,27(1):47-51.)

[2]李世奎. 试论旱区的干旱及其防御[J]. 干旱区资源与环境,1987(1):6-15. ( Li S K.A trial discussion on the drought and its prevention in the arid region [J].Journal of Arid Land Resoures and Environment[J]. 1987(1):6-15.)
[3]王维,吴超,刘梅,等. 转中国对虾抗菌肽基因水稻抗白叶枯病效应初析[J]. 中国水稻科学,2010,24(4):335-340. ( Wang W, Wu C, Liu M. Resistance of antimicrobial peptide genes transgenic rice to bacterial blight[J]. Chinese Journal Rice Science, 2010, 24(4): 335-340.)
[4]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnology, 1999, 17: 287-291.
[5]林抗雪, 刘修杰, 孙石, 等. 转TaNHX2大豆的耐盐性分析[J].中国农业科学, 2015,48(20):3998-4007. (Lin K X, Liu X J, Sun S H, et al. Salt tolerance analysis of TaNHX2 over-expression transgenic soybean[J]. Scientia Agricultura Sinica, 2015,48(20):3998-4007.)
[6]张丽君, 程林梅, 杜建中, 等. 导入TaNHX2基因提高了转基因普那菊苣的耐盐性[J]. 生态学报, 2011 , 31 (18): 5264-5272. (Zhang L J, Cheng L M, Du J Z, et al. Introduction of ?TaNHX2 gene enhanced salt tolerance of transgenic puna chicory plants[J]. Acta Ecologica Sinica, 2011, 31(18):5264-5272.)
[7]Wang Z N, Zhang J S, Guo B H, et al. Cloning and characterization of the Na+/H+ antiport genes from triticum aestivum[J]. Acta Botanica Sinica, 2002, 44(10): 1203-1208.
[8]Zhang Y M, Zhang H M, Liu Z H, et al. Thewheat NHX antiporter gene TaNHX2 confers salt tolerance intransgenic alfalfa by increasing the retention capacity of intracellularpotassium[J]. Plant Molecular Biology, 2015, 87(3): 317-327.
[9]Zhang J, Movahedi A, Sang M, et al. Functional analyses of NDPK2 in Populus trichocarpa and overexpression of PtNDPK2enhances growth and tolerance to abiotic stresses in transgenic poplar[J]. Plant Physiology Biochemical, 2017, 117:61-74.
[10]Gao F, Zhou J, Deng R Y, et al. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2017, 214: 81-90.
[11]王兴宇,魏崃,王伟威,等.转AtCBF4基因大豆株系的抗旱性评价[J].大豆科学,2014,33(3):365-369. (Wang X Y, Wei L, Wang W, et al. Drought resistance evaluation of ?AtCBF4 transgenic soybean[J]. Soybean Science, 2014,33(3):365-369.)
[12]吴广锡,刘丽君,杨德光,等.转Gm Hs FA1基因大豆的耐热性评价[J].大豆科学,2012,31(3):341-346. (Wu G X,Liu L J,Yang D G,et al. Heat resistance evaluation of GmHsFA1[J]. Soybean Science, 2012, 31(3):341-346.)
[13]晁毛妮,郝德荣,印志同,等.大豆生物量与产量组分间的相关及关联分析[J]. 作物学报,2014,40(1):7-16. ( Zhao M N, Hao D R, Yin Z T, et al. Correlation and association analysis between biomass and yield components in soybean [J].Crop Science, 2014,40(1):7-16.).
[14]买买提依明,殷工,徐立,等.新疆沙漠桑树品种持水力研究初报[J]. 蚕学通讯,2007(4):1-4. ( Mai M T Y M, Yin G, Xu L, et al. A preliminary study of water-retaining capability of desert mulberry in Xinjiang[J]. Newsletter of Sericultural Science, 2007(4): 1-4.)
[15]何明珠, 王辉, 陈智平. 荒漠植物持水力研究[J]. 中国沙漠, 2006, 26(3): 403-408. (He M Z, Wang H, Chen Z P. Water-retaining capability of desert plants[J]. Journal of Desert Research, 2006, 26(3): 403-408.)?
[16]王敏, 杨万明, 杜维俊. 苗期大豆根系及地上部性状与耐旱性的关系[J]. 大豆科学, 2012, 31(3): 399-405. (Wang M, Yang W M, Du W J. Root and aboveground characteristics at seedling and their relationship with drought tolerance in soybean[J]. Soybean Science, 2012,31(3):399-405.)
[17]刘莹,盖钧镒,吕慧能,等.大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位[J]. 遗传学报,2005(8):855-863. ( Liu Y, Gai J Y, Lyu H N, et al. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean[Glycine max(L.)Merr.][J]. Acta Gentica Sinica,2005(8):855-863.)
[18]朱维琴,吴良欢,陶勤南.作物根系对干旱胁迫逆境的适应性研究进展[J]. 土壤与环境,2002(4):430-433. ( Zhu W Q, Wu L H, Tao Q N. Advances in the studies on crop root against drought stress[J]. Soil and Environmental Sciences, 2002(4):430-433.)
[19]MoftahA E, Michel B E. The effect of sodium choloride on solute potential and proline accumulation in soybean leaves[J]. Physiology Plant,1987,83:238-240.
[20]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238. ( Liu E E, Zong H, Guo Z F, et al. Effects of drought, salt and chilling stresses on proline accumulation in shoot of rice seedlings[J]. Journal for Tropical and Subtropical Botany, 2000,8(3):235-238.)
[21]秦迪,赵翠兰,郑成忠,等.转BADH基因大豆耐旱性分析[J]. 中国油料作物学报,2015,37(6):752-758. (Qin D,Zhao C L, Zheng C Z, et al. Drought tolerance of transgenic soybean with BADH gene[J]. Chinese Journal of Oil Crop Sciences, 2015,37(6):752-758.)
[22]魏崃,吴广锡,唐晓飞,等. 过表达GmHSFA1大豆在干旱条件下对高温的响应[J]. 大豆科学,2016,35(2):257-261. ( Wei L. Wu G X, Tang X F, et al. Soybean responses to high temperatures under drought stress in the presence of an over-expressed GmHSFA1Gene[J]. Soybean Science,2016,35(2):257-261.)
[23]于志晶,尚丽霞,蔡勤安,等. 水稻热激蛋白基因HSP90转化大豆的研究[J]. 大豆科学,2016,35(2):222-227. (Yu Z J, Shang L X, Cai Q An, et al. Transformation of heat shock protein Gene HSP90 of rice into soybean[J], Soybean Science,2016,35(2):222-227.)

Memo

Memo:
-
Last Update: 2017-08-14