|Table of Contents|

Functional Prediction and Expression Analysis of GmABCG40(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年04期
Page:
502-507
Research Field:
Publishing date:

Info

Title:
Functional Prediction and Expression Analysis of GmABCG40
Author(s):
LI Yue1 ZHANG Yu-hang1 LI Dong-mei1 WANG Tao1 CHEN Wei1 WANG Xun2 LI Yong-guang1 LI Wen-bin1
(Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Soybean Biology and Genetics Breeding of Chinese Agriculture Ministry/College of Agriculture of Northeast Agricultural University,Harbin 150030,China)
Keywords:
Soybean ABCG transporters Expression analysis Function Bioinformatics.
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.04.0502
Abstract:
GmABCG40 gene sequence was obtained by searching the homologous gene of AtABCG40 in the soybean genome database. Bioinformatics analysis of amino acid sequence encoded by GmABCG40 and promoter sequence showed that the full-length CDS sequence of GmABCG40 was 4 284 bp, encoding a 1 427 amino acids protein GmABCG40 was a hydrophobic protein, possessed multiple N-glycosylation sites,kinase phosphorylation sites, N-myristoylation sites, two ATP/AGP binding site motif A and one tachykinin family signal. Structure domains analysis indicated that GmABCG40 contained two nucleotide binding domains and two trans membrane domains, which constituted NBD1-TMD1-NBD2-TMD2 structure and belonging to the ABCG subfamily.Cis-elements associated with hormones, stresses, light responses, endosperm expression and transcription factors binding were existed in the predicted promoter region.Phylogenetic analysis results suggested that GmABCG40 had the highest genetic relationship with leguminous plants such as Phaseolus vulgaris, Vigna angularis, Cajanus cajan and Lotus japonicus.Results of tissue specific expression analysis revealed that expression level of GmABCG40 was lowest in leaves, however, highest in roots, it was speculated to participate in the ABA transport process in roots.

References:

[1]张婧, 陈梦词, 马清,等. 植物 ABCG 转运蛋白研究进展[J]. 草业学报, 2015, 24(7):180-188. (Zhang J, Chen M C, Ma Q, et al. Review of advances in the study of plant ABCG transporters[J]. Acta Prataculturae Sinica, 2015, 24(7):180-188.)

[2]马云芳, 梁国鲁, 裴得胜,等. ABC转运蛋白研究的新进展[J]. 生物技术通报, 2008(5):35-41. (Ma Y F, Liang G L, Pei D S.Advancement of studies on ABC transporter proteins[J]. Biotechnology Bulletin, 2008(5):35-41.)
[3]朱璐, 许杰, 张大兵. 拟南芥ABC转运类蛋白家族的分子进化、表达模式和蛋白功能网络预测分析[J]. 植物生理学报, 2012(12):1151-1166. (Zhu L, Xu J, Zhang D B. Molecular evolution, expression and functional network prediction analysis of ABC transporter gene family in Arabidopsis thaliana[J]. Plant Physiology Journal, 2012(12):1151-1166.)
[4]王利国, 李玲. 拟南芥中ABC转运蛋白的研究进展[J]. 生命科学研究, 2002(S1):13-17.(Wang L G, Li L. Research advances of ABC transporters in Arabidopsis[J]. Life Science Research, 2002(S1):13-17.)
[5]金宏滨, 刘东辉, 左开井,等.植物ABC转运蛋白与次生代谢产物的跨膜转运[J]. 中国农业科技导报, 2007, 9(3):32-37.(Jin H B, Liu D H, Zuo K J, et al. Plant ABC transporters and their roles in the transmembrane transport of secondary metabolites[J]. Journal of Agricultural Science & Technology, 2007, 9(3):32-37.)
[6]邵若玄, 沈忆珂, 周文彬,等. 植物ATP结合盒(ABC)转运蛋白研究进展[J]. 浙江农林大学学报, 2013, 30(5):761-768. (Shao R X, Shen Y K, Zhou W B, et al. Recent advances for plant ATP-binding cassette transporters[J]. Journal of Zhejiang A & F University, 2013,30(5):761-768.)
[7]谢小芳, 陈志伟, 吴为人. 植物 PDR 蛋白家族的进化分析[J]. 基因组学与应用生物学, 2012(6):617-623. (Xie X F, Chen Z W, Wu W R. Phylogenetic analysis of the PDR protein family in plant[J]. Genomics & Applied Biology, 2012(6):617-623.)
[8]谢小雷, 张儒, 谭小宁,等. 植物PDR蛋白转运机制及功能的研究进展[J]. 生命科学, 2011(10):945-950. (Xie X L, Zhang R, Tan X N, et al. The progress of research on transfer mechanism and function of the plant PDR[J]. Chinese Bulletin of Life Sciences, 2011(10):945-950.)
[9]赵琳, 罗秋兰, 高阳,等. 大豆基因组GmRAV同源基因的生物信息学分析[J]. 中国油料作物学报, 2011, 33(6):550-554. (Zhao L, Luo Q L, Gao Y, et al. Bioinformatics analysis of GmRAV homologs in soybean genome[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(6):550-554.)
[10]Piper P, Mahé Y, Thompson S, et al.The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast[J]. EMBO Journal, 1998, 17(15):4257-4265.
[11]Sasabe M, Toyoda K, Shiraishi T, et al. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene[J]. FEBS Letters, 2002, 518(1-3):164-168.
[12]Stukkens Y, Bultreys A, Grec S, et al. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense[J]. Plant Physiology, 2005, 139(1):341-352.
[13]Yazaki K. ABC transporters involved in the transport of plant secondary metabolites[J]. FEBS Letters, 2006, 580(4):1183-1191.
[14]Jiang F, Hartung W. Long-distance signalling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal[J]. Journal of Experimental Botany, 2008, 59(1):37-43.
[15]Park S Y, Fung P, Nishimura N, et al.Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930):1068-1071.
[16]Verrier P J, Bird D, Burla B, et al. Plant ABC proteins-a unified nomenclature and updated inventory[J]. Trends in Plant Science, 2008, 13(4):151-159.
[17]Kang J, Hwang J U, Lee M, et al.PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2355-2360.
[18]Campbell E J, Manners J M. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis[J]. Plant Physiology, 2003, 133(3):1272-1284.

Memo

Memo:
-
Last Update: 2017-08-14