|Table of Contents|

The Response Mechanism of Soybean to Soybean Cyst Nematode (Heterodera Glycines)(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年03期
Page:
475-479
Research Field:
Publishing date:

Info

Title:
The Response Mechanism of Soybean to Soybean Cyst Nematode (Heterodera Glycines)
Author(s):
JIAO Meng-yao DONG Zheng LIU Shi-ming LI Wei
(College of Plant Protection,Hunan Agricultural University,Changsha 410128,China)
Keywords:
Soybean cyst nematode (SCN) Histocytology Enzyme system Transcription level DNA methylation
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.03.0475
Abstract:
Soybean cyst nematode (Heterodera glycines, SCN) is an important disease on soybean production, which is characterized by heavy damage, widespread and difficult to control, and causes great losses every year. Planting of resistant soybean varieties is the most effective measure to control SCN. Research of soybean response mechanism to SCN is the prerequisite for cultivating durable resistant varieties, and has great significance to speed up the anti-nematode breeding and the control of SCN. Here we reviewed the histocytology mechanism of soybean against SCN, soybean physiological and biochemical mechanisms of enzyme changes and phenolic metabolism after SCN infection. And also the mechanism of soybean gene transcription variation ,protein difference and DNA methylation after SCN infection was introduced at the molecular level. Hopely, it will be useful information for further study of SCN and its control.

References:

[1]Cook D E, Tong G L, Guo X, et al. Copy number variation of multiple genes at Rhg1mediates nematode resistance in soybean[J]. Science, 2012, 338(6111): 1206-1209.

[2]Wang H M, Zhao H H, Chu D. Genetic structure analysis of populations of the soybean cyst nematode, Heterodera glycines, from north China[J]. Nematology, 2015, 17(5): 591-600.
[3]Wrather J A, Koenning S R. Estimates of disease effects on soybean yields in the United States 2003 to 2005[J]. Nematology, 2006, 38(2): 173-180.
[4]段玉玺. 大豆胞囊线虫病及其防治[M]. 北京: 金盾出版社, 2006: 44-51. (Duan Y X. Soybean cyst nematode and its control[M]. Beijing: Jindun Press, 2006: 44-51.)
[5]Wang D, Duan Y X, Wang Y Y, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China[J]. Plant Disease, 2015, 99(6): 893.
[6]Peng D L, Peng H, Wu D Q, et al. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia China[J]. Plant Disease, 2016, 100(1): 229.
[7]林汉明, 常汝镇, 邵桂花, 等. 中国大豆耐逆研究[M]. 北京: 中国农业出版社, 2009: 136-137. (Lin H M, Chang R Z, Shao G H, et al. Research on the stress tolerance of soybean in China[M]. Beijing: China Agriculture Press, 2009: 136 -137.)
[8]王雪. 大豆抗胞囊线虫机制及与抗性相关的差异蛋白质组学研究[D]. 沈阳: 沈阳农业大学, 2009: 28-39. (Wang X. The resistant mechanism and different proteomics of soybean aganist Heterodera glycines[D]. Shenyang: Shenyang Agriculture University, 2009: 28-39.)
[9]Niblack T L, Lambert K N, Tylka G L. A model plant pathogen from the kingdom Animalia: Heterodera glycines, the soybean cyst nematode[J]. Annual Review of Phytopathology, 2006, 44(44): 283-303.
[10]Kim Y H, Kim K S, Riggs R D. Differential subcellular responses in resistance soybeans infected with soybean cyst nematode races[J]. Plant Pathology, 2010, 26(2): 154-158.
[11]Tucker M L, Murphy C A, Yang R. Gene expression profiling and shared promoter motif for cell wall-modifying proteins expressed in soybean cyst nematode-infected roots[J]. Plant Physiology, 2011, 156(1): 319-329.
[12]Kim Y H, Kim K S, Riggs R D. Initial subcellular responses of susceptible and resistant soybeans infected with the soybean cyst nematode[J]. Plant Pathology, 2012, 28(4): 401-408.
[13]Liu S, Kandoth P K, Warren S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260.
[14]罗璇, 段玉玺, 陈立杰, 等. 大豆胞囊线虫不同生理小种对大豆根内酶活力的影响[J]. 大豆科学, 2010, 29(3): 448-452. (Luo X, Duan Y X, Chen L J. Effect of different races of soybean cyst nematology on the activities of the enzymes in roots of soybean[J]. Soybean Science, 2010, 29(3): 448-452.)
[15]张海平, 王志, 李原萍, 等. 灰皮支黑豆抗大豆胞囊线虫4号生理小种的生化机制研究[J]. 大豆科学, 2012, 31(5): 796-800. (Zhang H P, Wang Z, Li Y P, et al. Biochemical mechanism of Xingxianhuipizhi resistant to race 4 of soybean cyst nematode[J]. Soybean Science, 2012, 31(5): 796-800.)
[16]李海燕, 段玉玺, 陈立杰, 等. 大豆胞囊线虫3号生理小种胁迫下不同抗性大豆品种的生化响应[J]. 大豆科学, 2014, 33(5): 783-786. (Li H Y, Duan Y X , Chen L J, et al. Biochemical reaction of different resistant soybean varieties to race 3 of soybean cyst nematode[J]. Soybean Science, 2014, 33(5): 783-786.)?
[17]Zhang J, Subramanian S, Stacey G, et al. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula, by Sinorhizobium meliloti[J]. Plant Journal, 2009, 57(1): 171-183.
[18]刘大伟, 段玉玺, 陈立杰, 等. 灰皮支黑豆抗大豆胞囊线虫3号生理小种的生化机制研究[J]. 华北农学报, 2009, 24(1): 165-168.(Liu D W, Duan Y X, Chen L J, et al. Study on biochemical mechanism of Huipizhi Heidou resistant to race 3 of soybean cyst nematode[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(1): 165-168.)
[19]Wuyts N, Lognay G, Swennen R, et al. Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism[J]. Journal of Experimental Botany, 2006, 57(11): 2825-2835.
[20]段玉玺, 李海燕, 陈立杰, 等. 大豆不同品种根内类黄酮提取物对大豆胞囊线虫的抑制作用[J] . 大豆科学, 2014, 33(5): 724-727. (Duan Y X, Li H Y, Chen L J, et al. Inhibitory effects of flavonoids extracted from different soybean root on Heterodera glycines Ichinohe[J]. Soybean Science, 2014, 33(5): 724-727.)
[21]李海燕, 段玉玺, 陈立杰. 大豆植株中类黄酮对大豆胞囊线虫的毒杀效果及机理研究[J]. 作物杂志, 2015(1): 57-60. (Li H Y, Duan Y X, Chen L J, et al. Mechanism of flavonoids in soybean plant on Heterodera Glycines Ichinohe[J]. Crops, 2015 (1): 57-60.)
[22]Li X Y, Wang X, Zhang S P, et al. Comparative profiling of the transcriptional response to soybean cyst nematode infection of soybean roots by deep sequencing[J]. Chinese Science Bulletin, 2011, 56(18): 1904-1911.
[23]刘大伟, 陈立杰, 段玉玺. 胞囊线虫侵染后不同抗性大豆根系差异基因表达的初步分析[J]. 西南农业学报, 2014, 27(4): 1494-1498. (Liu D W, Chen L J, Duan Y X, et al. Preliminary study on gene expression profiling in different resistant soybean roots in response to Heterodera glycines stress[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1494-1498.)
[24]Li B, Sun J M, Wang L, et al. Comparative analysis of gene expression profiling between resistant and susceptible varieties infected with soybean cyst nematode race 4 in Glycine max[J]. Journal of Integrative Agriculture, 2014, 13(12): 2594-2607.
[25]王芳, 段玉玺, 陈立杰, 等. 胞囊线虫侵染后小粒黑豆抑制消减杂交cDNA文库的构建及EST分析[J]. 中国农业科学, 2012, 45(6): 1106-1115. (Wang F, Duan Y X, Chen L J, et al. Construction of SSH-cDNA libraries and EST analysis in roots of Xiaoli black bean in response to Heterodera glycines parasitization[J]. Scientia Agricultura Sinica, 2012, 45(6): 1106-1115.)
[26]李海燕, 王芳, 段玉玺, 等. 大豆胞囊线虫侵染诱导五寨黑豆早期的转录组分析[J]. 中国油料作物学报, 2015, 37(2): 194-200. (Li H Y, Wang F, Duan Y X, et al. Transcriptome analysis of Wuzhai heidou infected by Heterodera glycines[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(2): 194-200.)
[27]Ithal N, Recknor J, Nettleton D, et al. Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean[J]. Molecular Plant-Microbe Interactions, 2007, 20(20): 293-305.
[28]Klink V P, Hosseini P, Matsye P D, et al. Syncytium gene expression in Glycine max.[PI 88788], roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines[J]. Plant Physiology & Biochemistry, 2010, 48(3): 176-193.
[29]练云, 卢为国. 大豆抗SCN机制及抗病相关基因研究进展[J]. 中国油料作物学报, 2013, 35(6): 727-732. (Lian Y, Lu W G. Advances on resistance mechanism and gene to SCN in soybean[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(6): 727-732.)
[30]Rambani A, J. Hollis Rice, Liu J, et al. The methylome of soybean roots during the compatible interaction with the soybean cyst nematode[J]. Plant Physiology, 2015, 168(4): 1364-1377.
[31]刘大伟, 陈立杰, 段玉玺. 大豆胞囊线虫胁迫下不同抗性大豆杂交后代根系蛋白质组分析[J]. 华北农学报, 2013, 28(5): 29-33.(Liu D W, Chen L J, Duan Y X. Proteomic analysis of soybean with different resistance differentially expressed proteins induced by Heterodera glycines[J]. Acta Agriculturae Boreali Sinica, 2013, 28(5): 29-33.)
[32]王雪, 段玉玺, 陈立杰, 等. 大豆胞囊线虫胁迫下大豆根部蛋白质差异 表达分析[J]. 中国油料作物学报, 2015, 37(1): 96-101. (Wang X, Duan Y X, Chen L J, et al. Proteins different expression in soybean roots after infected by Heterodera glycines Ichinohe[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(1): 96-101.)
[33]Chen X H, Macdonald M, Khan F, et al. Dynamic proteome analysis of soybean roots displaying compatible and incompatible interactions to different Heterodera glycines-populations[J]. Molecular Ecology, 2013, 10(4): 2961-2978.
[34]Concibidon V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean[J].Crop Science, 2004, 44(4): 1121-1131.
[35]Brucker E, Carlson S, Wright E, et al. Rhg1-alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse[J]. Theoretical & Applied Genetics, 2005, 111(1): 44-49.
[36]Afzal A J, Natarajan A, Saini N, et al. The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots[J]. Plant Physiology, 2009, 151(3): 1264-1280.
[37]刘世名, 彭德良. 大豆的胞囊线虫抗性研究新进展[J]. 中国科学, 2016, 46 (5): 1-12. (Liu S M, Peng D L. Recent progresses on soybean resistance to soybean cyst nematode[J]. Scientia Sinica Vitae, 2016, 46 (5): 1-12.)
[38]Hewezi T, Piya S, Richard G, et al. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst-nematode Heterodera schachtii, in Arabidopsis[J]. Molecular Plant Pathology, 2014, 15(7): 730-736.
[39]Gheysen G, Mitchum M G. How nematodes manipulate plant development pathways for infection[J]. Current Opinion in Plant Biology, 2011, 14(4): 415-421.
[40]Ambawat S, Sharma P, Yadav N R, et al. MYB transcription factor genes as regulators for plant responses: An overview[J]. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321.
[41]Reddy A S, Ali G S, Celesnik H, et al. Coping with stresses: Roles of calcium and calcium/calmodulin-regulated gene expression.[J]. Plant Cell, 2011, 23(6): 2010.
[42]Dielen A S, Badaoui S, Candresse T, et al. The ubiquitin/26S proteasome system in plant-pathogen interactions: A never-ending hide-and-seek game[J]. Molecular Plant Pathology, 2010, 11(2): 103.
[43]Hewezi T, Baum T J. Gene Silencing in Nematode Feeding Sites[J]. Advances in Botanical Research, 2015, 73(6782): 221-239.
[44]Ithal N, Recknor J, Nettleton D, et al. Developmental transcript profiling of cyst nematode feeding cells in soybean roots[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 510-525.
[45]Hosseini P, Matthews B F. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction[J]. BMC Plant Biology, 2014, 14(1): 1-10.?
[46]Cook D E, Bayless A M, Wang K, et al. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode[J]. Plant Physiology, 2014, 165(2): 630-647.
[47]Schmitz R J, He Y, Valdés López O, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population[J]. Genome Research, 2013, 23(10): 1663-1674.
[48]Liu J Z, Graham M A, Pedley K F, et al. Gaining insight into soybean defense responses using functional genomics approaches[J]. Briefings in Functional Genomics, 2015, 14(4): 283-290.
[49]Matthews B F, Beard H, Brewer E, et al. Arabidopsis, genes, AtNPR1, AtTGA2, and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots[J]. BMC Plant Biology, 2014, 14(1): 94-100.
[50]Li X Y, Wang X, Zhang S P, et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS ONE, 2012, 7(6): e39650.
[51]Jiao Y, Vuong T D, Liu Y, et al. Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI437655[J]. Theoretical & Applied Genetics, 2015, 128(1): 15-23.

Memo

Memo:
-
Last Update: 2017-06-30