|Table of Contents|

Regulation of Plant Signal Molecules on the Processes of Flowering and Nodulation in Soybean [Glycine max(L) Merr](PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年02期
Page:
315-322
Research Field:
Publishing date:

Info

Title:
Regulation of Plant Signal Molecules on the Processes of Flowering and Nodulation in Soybean [Glycine max(L) Merr]
Author(s):
WANG Zhili12 LIU Wei2 WU Cunxiang2 FENG Yongjun1
1School of Life Science, Beijing Institute of Technology, Beijing 100081;?
2 Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081
Keywords:
Soybean Flowering Nodulation Signal Molecules
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.02.0315
Abstract:
As an important crop for food and oil, soybean has a long cross time between vegetative and reproductive growth, which triggers an energy competition especially between nodulation and flowering This paper reviewed the biological effects of plants signal molecules sucrose, phytohormones and miRNAs on the regulation of flowering and nodulation in soybean Understanding of the regulatory and molecular mechanism of these regulation would be significant to pinpoint the developmental pattern and improve the production of soybean

References:

[1]董钻大豆产量生理[M]. 北京: 中国农业出版社, 2000: 188-194(Dong Z Soybean yield physiology[M]. Beijing: Agricultural Press, 2000: 188-194)

[2]Wu C X, Ma Q B, Yam K M, et al In situ expression of the GmNMH7 gene is photoperioddependent in a unique soybean (Glycine max[L] Merr) flowering reversion system [J]. Planta, 2006, 223(4): 725-735
[3]Abd Alla H M Autoregulation of soybean Bradyrhizobium nodule symbiosis is controlled by shoot or/and root factors[J]. World Journal of Microbiology & Biotechnology, 1999, 15: 715-722
[4]Kühn C, Barker L, Bürkle L, et al Update on sucrose transport in higher plants[J]. Journal of Experimental Botany, 1999, 50: 935-953
[5]Frommer B W, Sonnewald U Molecular analysis of carbon partitioning in solanaceous species [J]. Journal of Experimental Botany, 1995, 46(287): 587-607
[6]Seger M, Gebril S, Tabilona J, et al Impact of concurrent overexpression of cytosolic glutamine synthetase(GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco[J]. Planta, 2015, 241(1): 69-81
[7]Roldán M, Gómez Mena C, Ruiz García L, et al Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark[J]. The Plant Journal, 1999, 20(5): 581-590
[8]Ohto M, Onai K, Furukawa Y, et al Effects of sugar on vegetative development and floral transition in Arabidopsis [J]. Plant Physiology, 2001, 127: 252-261
[9]董钻大豆栽培生理[M]. 北京:中国农业出版社, 1997: 33-51(Dong Z Soybean cultivation physiology[M]. Beijing: Agricultural Press, 1997: 33-51)
[10]马春梅, 郭海龙, 龚振平, 等不同基因型大豆糖分积累规律的研究—(II)蔗糖含量积累规律研究[J]. 作物杂志, 2011(1): 25-29(Ma C M, Guo H L, Gong Z P, et al Sugar accumulation in soybean among different genotypes—(II) Sucrose[J]. Crops, 2011(1): 25-29)
[11]Pedra J H, Delú Filho N, Pirovani C P, et al Antisense and sense expression of a sucrose binding protein homologue gene from soybean in transgenic tobacco affects plant growth and carbohydrate partitioning in leaves[J]. Plant Science, 2000, 152: 87-98
[12]Ripp G K, Viitanen V P, Hitz D W, et al Identification of a membrane protein associated with sucrose transport into cells of development soybean cotyledons[J]. Plant Physiology, 1988, 88: 1435-1445
[13]Lu Q Y, Zhao L, Li D M, et al A GmRAV ortholog is involved in photoperiod and sucrose control of flowering time in soybean[J]. PLoS One, 2014, 9(2): e89145
[14]Wong C E, Singh M B, Bhalla P L Molecular processes underlying the floral transition in the soybean shoot apical meristem[J]. The Plant Journal, 2009, 57(5): 832-845
[15]Chopra J, Kaur N, Gupta K A Carbohydrate status and sucrose metabolism in mungbean roots and nodules[J]. Phytochemistry, 1998, 49(7): 1891-1895
[16]Udvardi K M, Day A D Metabolite transport across symbiotic membranes of legume nodules [J]. The Annual Review of Plant Biology and Plant Molecular Biology, 1997, 48: 493-523
[17]González E M, Gordon A J, James C L, et al The role of sucrose synthase in the response of soybean nodules to drought[J]. Journal of Experimental Botany, 1995, 46(291): 1515-1523
[18]Gordon J A, Minchin R F, Sk t L, et al Stress induced declines in soybean N, fixation are related to nodule sucrose synthase activity [J]. Plant Physiolgy, 1997, 114: 937-946
[19]López M, Herrera Cervera J A, Lluch C, et al Trehalose metabolism in root nodules of the model legume Lotus japonicas in response to salt stress[J]. Physiologia Plantarum, 2006, 128(4): 701-709
[20]Rhrig H, John M, Schmidt JModification of soybean sucrose synthase by S thiolation with ENOD40 peptide A[J]. Biochemical and Biophysical Research Communications, 2004, 325(3): 864-870
[21]Rhrig H, Schmidt J, Miklashevichs E, et al Soybean ENOD40 encodes two peptides that bind to sucrose synthase[J]. Proceedings of The National Academy of Sciences of The United States of America, 2002, 99(4): 1915-1920
[22]orresponding proteins in nodules of soybean plants subjected to dark induced stress[J]. Journal of Experimental Botany, 1993, 44(266): 1453-1460
[23]Ching T M, Hedtke S, Russell A S Energy state and dinitrogen fixation in soybean nodules of darkgrown plants[J]. Plant Physiolgy, 1975, 55: 796-798
[24]Fujikake H, Yamazaki A, Ohtake N, et al Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules[J]. Journal of Experimental Botany, 2003, 54(386): 1379-1388
[25]D′Haeseleer K, De Keyser A, Goormachtig S, et al Transcription factor MtATB2: About nodulation, sucrose and senescence[J]. Plant and Cell Physiology, 2010, 51(9): 1416-2144
[26]Liu W, Han X D, Zhan G, et al A novel sucroseregulatory MADSBox transcription factor GmNMHC5 promotes root development and nodulation in soybean ( Glycine max [L] Merr )[J]. International Journal of Molecular Sciences, 2015, 16(9): 20657-20673
[27]Greer H A L Effect of growth regulators on reproduction in soybean[J]. Retrospective Theses and Dissertations, 1964: 2708
[28]Nonokawa K, Kokubun M, Nakajima T, et al Roles of auxin and cytokinin in sybean pod setting[J]. Plant Production Science, 2007, 10(2): 199-206
[29]Oberholster S D, Peterson C M, Dute R R Pedicel abscission of soybean: Cytological and ultrastructural changes induced by auxin and ethephon[J]. Canadian Journal of Botany, 1991, 69: 2177-2186
[30]Turner M, Nizampatnam N R, Baron M, et al Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean[J]. Plant Physiology, 2013, 162(4): 2042-2055
[31]Ferguson B J, Mathesius U Phytohormone regulation of legumerhizobia interactions[J]. Journal of Chemical Ecology, 2014, 40(7): 770-790
[32]Ghosh S, Basu P S Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo [J]. Microbiological Research, 2006, 161(4): 362-366
[33]Pacios Bras C, Schlaman H R M, Boot K, et al Auxin distribution in Lotus japonicusduring root nodule development[J]. Plant Molecular Biology, 2003, 52: 1169-1180
[34]Billy F, Grosjean C, May S, et al Expression studies on AUX1 like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development[J]. Molecular Plant Microbe Interactions, 2001, 14(3): 267-277
[35]Subramanian P, Kim K, Krishnamoorthy R, et al Endophytic bacteria improve nodule function and plant nitrogen in soybean on co inoculation with Bradyrhizobium japonicum MN110 [J]. Plant Growth Regulation, 2014, 76(3): 327-332
[36]Datta C, Basu P S Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan [J]. Microbiological Research, 2000, 155(2): 123-127
[37]Suo H C, Ma Q B, Ye K X, et al Overexpression of AtDERB1A causes a severe dwarf phenotype by decreasing endogenous Gibberellin levels in soybean [Glycine max(L) Merr][J]. PLoS One, 2012, 7(9): e45568
[38]Sun Mx, Wong C E, Singh M B, et al The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process [J]. PLoS One, 2013, 8(6): e65319
[39]Huff A, Dybing D C Factors affecting shedding of flowers in soybean (Glycine max(L) Merrill)[J]. Journal of Experimental Botany, 1980, 31(122): 751-762
[40]Zhao L, Wang Z, Lu Q, et al Overexpression of a GmGBP1 ortholog of soybean enhances the responses to flowering, stem elongation and heat tolerance in transgenic tobaccos[J]. Plant Molecular Biology, 2013, 82(3): 279-299
[41]Hayashi S, Reid D E, Lorenc M T, et al Transient Nod factor dependent gene expression in the nodulation competent zone of soybean ( Glycine max [L] Merr) roots [J]. Plant Biotechnology Journal, 2012, 10(8): 995-1010
[42]Méndez C, Baginsky C, Hedden P, et al Gibberellin oxidase activities in Bradyrhizobium japonicum bacteroids[J]. Phytochemistry, 2014, 98: 101-109
[43]Noodén L D, Singh S, Letham D S Correlation of xylem sap Cytokinin levelswith monocarpic senescence in soybean[J]. Plant Physiology, 1990, 93: 33-39
[44]Nagel L, Brewster R, Riedell W E, et alCytokinin regulation of flower and pod set in soybean ( Glycine max (L) Merr ) [J]. Annals of Botany, 2001, 88: 27-31
[45]Bishopp A, Help H,Helariutta Y Chapter 1 Cytokinin signaling during root development[J]. 2009, 276: 1-48
[46]Frugier F, Kosuta S, Murray J D, et al Cytokinin: Secret agent of symbiosis[J]. Trends in Plant Science, 2008, 13(3): 115-120
[47]Prudent M, Salon C, Smith L D, et al Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean[J]. Plant Signaling & Behavior, 2016, 11(9): e1212799
[48]Mortier V, Fenta B A, Martens C, et al Search for nodulation related CLE genes in the genome of Glycine max[J]. Journal of Experimental Botany, 2011, 62(8): 2571-2583
[49]Heckmann A B, Sandal N, Bek A S, et al Cytokinin induction of root nodule primordia in Lotus japonicas is regulated by a mechanism operating in the root cortex[J]. Molecular Plant Microbe Interactions, 2011, 24(11): 1385-1395
[50]Sasaki T, Suzaki T, Soyano T, et al Shoot derived cytokinins systemically regulate root nodulation[J]. Nature Communication, 2014, 5: 4983
[51]程云清, 张奇, 刘剑锋, 等 外源乙烯调控大豆花粉育性的研究[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 25-32 (Cheng Y Q, Qi Zhang, Liu J F, et al Studies on pollen fertility regulated by exogenous ethylene in soybean (Glycine max L Merrill)[J]. Journal of Zhejiang University(Agricultural and Life Science), 2014, 40(1): 25-32
[52]Rook F, Hadingham S A, Li Y, et al Sugar and ABA response pathways and the control of gene expression[J]. Plant, Cell and Environment, 2006, 29(3): 426-434
[53]Oldroyd G E, Downie J A Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annual Review of Plant Biology, 2008, 59: 519-546
[54]Oldroyd G E D, Engstrom E M, Long S R Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula [J]. The Plant Cell, 2001, 13: 1835-1849
[55]Heidstra R, Yang W C, Yalcin Y, et al Ethylene provides positional information on cortical cell division but is not involved in Nod factor induced root hair tip growth in Rhizobium legume interaction[J]. Development, 1997, 124: 1781-1787
[56]Prayitno J, Rolfe B G, Mathesius U The Ethylene insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation[J]. Plant Physiology, 2006, 142(1): 168-180
[57]Ding Y L, Oldroyd G E D Positioning the nodule, the hormone dictum[J]. Plant Signaling and Behavior, 2009, 4(2): 89-93
[58]Sun J, Cardoza V, Mitchell D M, et al Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation[J]. Plant Journal, 2006, 46(6): 961-970
[59]Cho M J, Harper J E Effect of abscisic acid application on root isoflavonoid concentration and nodulation of wild type and nodulationmutant soybean plants[J]. Plant and Soil, 1993, 152: 145-149
[60]Wang Y, Suo H, Zheng Y, et al The soybean root specific protein kinase GmWNK1 regulates stressresponsive ABA signaling on the root system architecture[J]. Plant Journal, 2010, 64(2): 230-242
[61]Cho J M, Harper E J Effect of abscisic acid application on root isoflavonoid concentration and nodulation of wild type and nodulationmutant soybean plants[J]. Plant and Soil, 1993, 152: 145-149
[62]Martínez Abarca F, Herrera Cervera J A, Bueno P, et al Involvement of salicylic acid in the establishment of the Rhizobium meliloti Alfalfa symbiosis[J]. Molecular PlantMicrobe Interactions, 1998, 11(2): 153-155
[63]Stacey G, McAlvin C B, Kim S Y, et al Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicas and Medicago truncatula [J]. Plant Physiology, 2006, 141(4): 1473-1481
[64]Yan Z, Hossain M S, Wang J, et al miR172 regulates soybean nodulation[J]. Molecular Plant Microbe Interactions, 2013, 26(12): 1371-1377
[65]Subramanian S, Fu Y, Sunkar R, et al Novel and nodulation regulated microRNAs in soybean roots[J]. BMC Genomics, 2008, 9(1): 160
[66]Wang T, Sun M Y, Wang X S, et al Over expression of GmGIa regulated soybean miR172a confers early flowering in transgenic Arabidopsis thaliana [J]. International Journal of Molecular Sciences, 2016, 17(5): 645
[67]Cao D, Li Y, Wang J, et al GmmiR156b overexpression delays flowering time in soybean[J]. Plant Molecular Biology, 2015, 89 (4): 353-363
[68]Simon S A, Meyers B C, Sherrier D J MicroRNAs in the Rhizobia legume symbiosis[J]. Plant Physiology, 2009, 151(3): 1002-1008
[69]Wang Y N, Li K X, Chen L, et al MicroRNA167 directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development [J]. Plant Physiology, 2015, 168: 101-116

Memo

Memo:
-
Last Update: 2017-05-14