|Table of Contents|

Resistance Identification and Response of Wild Soybean (Glycine soja) to Soybean Mosaic Virus in Eastern Hebei Province(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2017年01期
Page:
92-97
Research Field:
Publishing date:

Info

Title:
Resistance Identification and Response of Wild Soybean (Glycine soja) to Soybean Mosaic Virus in Eastern Hebei Province
Author(s):
WANG Yu1 ZHANG Kai2 SUN Wei-ming2 WANG Shuai1 CAO Hong-mei1 DONG Qiu-ping2 ZHANG Hua-xue2 LI Kai3
1.College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; 2. Life Science and Technology Institute, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; 3. National Center for Soybean Improvement of Nanjing Agricultural University/National Key Laboratory for Crop Genetics and Germplasm Enhancement,Nanjing 210095, China
Keywords:
Wild soybean(Glycine soja) Soybean Mosaic Virus Resistance identification Gene expression
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2017.01.0092
Abstract:
In this study, the resistance identification of 162 wild soybean (Glycine soja) to Soybean Mosaic Virus (SMV) and the enzymatic activity of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and genes expression of GmPR1 and GmPR10 in resistance/susceptible wild soybean plants were investigated. The results showed that 7 wild soybean materials were resistance accessions(4.3%), 6 materials were moderately resistance accessions (3.7%), 62 materials were intermediate accessions (38.3%) and 87 materials were susceptible accessions (53.7%). The activity of POD and CAT in resistance plants were significantly increased compared to CK, whereas the activity of these two enzymes were significantly decreased in susceptible plants, the expression of GmPR1and GmPR10 in resistance plants were significantly increased compared to susceptible plants. Preliminarily showed that POD, CAT and GmPR1 and GmPR10 may be related to resistance response in soybean-SMV interaction.

References:

[1]李凯, 夏迎春, 王大刚,等. 黑龙江省大豆花叶病毒(SMV)株系的动态变化分析[J]. 大豆科学, 2014, 33(6):880-884. (Li K, Xia Y C, Wang D G, et al. Analysis of dynamic change of soybean mosaic virus strains in Heilongjiang province of China[J]. Soybean Science, 2014, 33(6):880-884.)

[2]王大刚, 李华伟, 智海剑,等. 安徽省SMV 株系的鉴定及其抗源筛选[J].中国油料作物学报, 2014, 36(3):374-379. (Wang D G, Li H W, Zhi H J,et al. Identification of strains and screening of resistance resources to soybean mosaic virus in Anhui province[J].Chinese Journal of Oil Crop Sciences, 2014, 36(3):374-379.)
[3]杨永庆, 侯文焕, 边全,等. 河北地区大豆花叶病毒株系的组成与分布[J].大豆科学, 2014, 33(1):88-90. (Yang Y Q, Hou W H, Bian Q, et al. Composition and distribution of SMV strains in Hebei[J]. Soybean Science, 2014, 33(1):88-90.)
[4]侯文焕, 林静, 闫龙, 等. 黄淮海北部地区大豆育成品种(系)对黄淮海主要SMV流行株系的抗性评价[J].植物遗传资源学报, 2014, 15(4):888-893. (Hou W H, Lin J, Yan L, et al. evaluating soybean cultivars (accessions) from Northern Huang-Huai-Hai resistance to major SMV strains of Huang-Huai-Hai[J].Journal of Plant Genetic Resources, 2014, 15(4):888-893.)
[5]陈文杰,梁江,钟开珍, 等. 大豆抗花叶病毒材料初步筛选及评价[J].大豆科学, 2002, 31(4):617-620. (Chen W J, Liang J, Zhong K Z,et al. Preliminary selection and evaluation for Glycine max resistant to soybean mosaic virus[J]. Soybean Science, 2002, 31(4):617-620. )
[6]史凤玉, 朱英波, 龙茹,等. 野生大豆抗大豆花叶病毒病评价、聚类及性状间相关分析[J].大豆科学, 2010, 29(6):976-981. (Shi F Y, Zhu Y B, Long R,et al. Evaluation, cluster analysis for Glycine soja resistant to soybean mosaic virus(SMV) and correlation analysis between characters[J]. Soybean Science, 2010, 29(6):976-981.)
[7]史凤玉, 朱英波, 李海潮, 等. 野生大豆叶片形态结构与抗病毒病关系的研究[J].大豆科学, 2008, 27(1):52-60. (Shi F Y, Zhu Y B, Li H C, et al. Relationships between SMV resistance and morphological structures in wild soybean [J]. Soybean Science, 2008, 27(1):52-60.)
[8]王媛, 杨红玉. 植物的抗病性及其分子机制[J].安徽农学通报, 2006, 12(9):47-50. (Wang Y, Yang H Y. Disease resistance of plant and its molecular mechanism[J]. Anhui Agricultural Science Bulletin, 2006, 12(9):47-50.)
[9]Levine A, Tenhaken R, Dixon R, et al. H2O2?from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell, 1994,79: 583-593.
[10]Rentel M C, Knight M R. Oxidative stress-induced calcium signaling in Arabidopsis[J]. American Society of Plant Biologist, 2004, 135: 1471-1479.
[11]Desikan R, Clarke A, Neill S J, et al. H2O2?activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures[J]. Journal of Experimental Botany, 1999, 50: 1863-1866.
[12]李开盛, 曹越平. 野生大豆抗花叶病毒病生化机制的研究[J].大豆科学, 2011, 30(2):254-258. (Li K S, Cao Y P. Biochemical mechanism of resistance to SMV in wild soybean (Glycine soja)[J]. Soybean Science, 2011, 30(2):254-258.)
[13]王修强,盖钧镒,濮祖芹.黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J].大豆科学, 2003, 22(2): 102-107.(Wang X Q, Gai J Y. Classification and distribution of strain groups of soybean mosaic virus in middle and lower HuangHuai and Changjiang valleys [J]. Soybean Science , 2003, 22(2): 102-107.)
[14]智海剑, 盖钧镒. 大豆花叶病毒症状反应的遗传研究[J]. 中国农业科学, 2005(5):944-949. (Zhi H J, Gai J Y. Studies on inheritance of symptom reaction to soybean mosaic virus in soybean[J]. Scientia Agricultura Sinica, 2005(5):944-949. )
[15]谢淑仪, 阎万元, 金莲香,等. 吉林省栽培和野生大豆病毒病的毒原种类及野生资源抗性鉴定报告[J]. 吉林农业科学, 1982(1): 60-69. (Xie S Y, Yan W Y, Jin L X. et al. The report about the virus diseases on cultivated and wild soybean in Jilin province[J]. Jilin Agricultural Sciences, 1982(1): 60-69.)
[16]张锴, 任锐, 王宇,等. 大豆花叶病毒引发大豆症状类型的研究[J]. 大豆科学, 2015,34 (6):1011-1014. (Zhang K, Ren R, Wang Y, et al. The types of symptoms in soybean leaves caused by soybean mosaic virus[J]. Soybean Science, 2015,34(6):1011-1014.)
[17]Desikan R, Clarke A, Neill S J, et al. H2O2?activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures[J]. Jounal of Experimental Botany, 1999, 50: 1863-1866.
[18]Whitham S A, Quan S, Chang H S, et al. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants[J]. Plant Journal, 2003, 33: 271-283.
[19]Dempsey D A, Pathirana M S, Wobbe K K, et al. Identification of an Arabidopsis locus required for resistance to turnip crinkle virus[J]. Plant Journal, 1997, 11: 301-311.
[20]Volko S M, Boller T, Ausubel F M. Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening[J]. Genetics, 1998, 149: 537-548.
[21]LussoM, Kué J. Increased activities of ribonuclease and protease after challenge in tobacco plants with induced systemic resistance[J]. Physiological Molecular Plant Pathology, 1995, 47:419-428.

Memo

Memo:
-
Last Update: 2017-03-14