|Table of Contents|

TL Mapping for Seed Weight per Plant by using the Wild Soybean Chromosome Segment Substitution Lines(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2016年05期
Page:
742-747
Research Field:
Publishing date:

Info

Title:
TL Mapping for Seed Weight per Plant by using the Wild Soybean Chromosome Segment Substitution Lines
Author(s):
WEI Si-ming1 CHEN Qing-shan1 JIANG Hong-wei2 YIN Yan-bin1 WANG Dan-hua1 HU Guo-hua2 WU Xiao-xia1 PAN Xiao-cheng3
(1.Agronomy College, Northeast Agriculture University, Harbin 150030, China; 2.Land Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China; 3.Sideline Base for 65301 Force of Heilongjiang, Wudalianchi 164100,China)
Keywords:
Soybean Seed weight per plant Chromosome segment substitution lines QTL mapping
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2016.05.0742
Abstract:
To study the QTL mapping of seed weight per plant, which is beneficial to increase the yield of soybean. In this study, the BC3F3population is a chromosome segment substitution lines which constituted by 161 lines, with the wild soybean ZYD00006 as donor parent and the cultivar Suinong 14 as recurrent parent, selfing and backcross continuously for several years. The genetic background of this population relatively consistent, which reducing the interference greatly and improving the accuracy of QTL mapping. The QTL mapping was combined by ANOVA Method and T-test for independent samples. A total of 9 QTLs underlying seed weight per plant were detected which distributed on 7 linkage groups.Three QTLs were detected by both methods, including .QSW-J-1, QSW-J-2, QSW-G-1-2 QTL were in accord with known results. Another 7 ones were the new discovery QTL, which should be specific loci in our materias. The fragment length of QSW-J-1 was 7.0 cM, and the additive effects of it is -2.7 g, which could be used as the first choice loci for further study.

References:

[1]Dargahi H,Tanya P, Somta P, et al.Mapping quantitative trait loci for yield-related traits in soybean (Glycine max L)[J]Breeding Science, 2014,64: 282-290.

[2]Liu W X, Kim M Y, Van K J,et al. QTL Identification of yield-related traits and their association with flowering and maturity in soybean [J]. Journal of Crop Science and Biotechnology, 2011,14 (1): 65-70.
[3]Chapman A, Pantalone V, Ustun A, et al. Quantitative trait loci for agronomic and seed quality traits in an F2and F4:6 soybean population[J]. Euphytica, 2003, 129: 387-393.
[4]范冬梅, 孙殿君, 马占洲, 等. 多种环境下大豆单株粒重QTL 的定位与互作分析[J]. 作物学报, 2013, 39(6): 1021-1029.(Fan D M, Sun D J, Ma Z Z, et al. QTL mapping and interaction analysis of seed weight per plant in soybean among different environments[J]. Acta Agronomica Sinica,2013,39(6):1021-1029.)
[5]Antonio J D V, Dario A d O, Taís C B S, et al.Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7and F8generations[J]. Plant Physiology, 2006, 18(2): 281-290.
[6]Chen Q S, Zhang Z C, Liu C Y, et al. QTL analysis of major agronomic traits in soybean[J]. Agricultural Sciences in China, 2007, 6(4): 399-405.
[7]向仕华, 王吴彬, 何庆元, 等. 多环境下野生大豆染色体片段代换系群体农艺性相关QTL/片段的鉴定[J]. 中国农业科学, 2015, 48(1):10-22.(Xiang S H, Wang W B, He Q Y, et al. Identification of QTL/segments related to agronomic traits using CSSL population under multiple environments[J]. Scientia Agricultura Sinica, 2015, 48(1):10-22.)
[8]王海滨. 大豆主要农艺性状QTL定位及分子标记辅助选择研究[D].吉林: 吉林农业大学, 2014.(Wang H B. QTL mapping of major agronomic traits and marker-assistant selection in soybean[D]. Jilin: Jilin Agricultural University, 2014.)
[9]王立秋, 赵永锋, 薛亚东, 等.玉米衔接式单片段导入系群体的构建和评价[J].作物学报, 2007, 33(4): 663-668.(Wang L Q, Zhao Y F, Xue Y D, et al. Development and evaluation to two link-up single segment introgression lines (SSILs) of maize (Zea mays L)[J].Acta Agronomica Sinica, 2007, 33(4): 663-668).
[10]Zhang W B, Qiu P C, Jiang H W, et al. Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean[J].Molecular Biology Reports, 2012, 39(5): 6087-6094.
[11]Wang W, He Q, Yang H, et al. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb et Zucc) as donor parent[J]. Euphytica, 2013, 189(2): 293-307.
[12]Li M, Sun P, Zhou H, et al.Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice (Oryza sativa L)[J].Theoretical and Applied Genetics, 2011, 123(3): 411-420.
[13]Koide Y, Fujita D, Tagle A G, et al. QTL for spikelet number from a high-yielding rice variety, Hoshiaoba, detected in an introgression line with the genetic background of an indica rice variety, IR64[J]. Euphytica, 2013, 192(1): 97-106.
[14]赵君, 刘剑光, 吴巧娟, 等. 利用染色体片段代换系定位棉花抗黄萎病QTL[J].棉花学报, 2014, 26(6): 499-505.(Zhao J, Liu J G, Wu Q J, et al. QTL mapping for plant height using chromosome segment substitution lines in upland cotton[J]. Cotton Science, 2014, 26(6): 499-505.)
[15]何蕊, 石玉真, 张金凤, 等.利用染色体片段代换系定位陆地棉株高QTL[J].作物学报, 2014, 40(3): 457-465.(He R, Shi Y Z, Zhang J F, et al.QTL mapping for plant height using chromosome segment substitution lines in upland cotton[J]. Acta Agronomica Sinica, 2014, 40(3): 457-465.).
[16]Wang W, He Q, Yang H,et al. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb-et Zucc) as donor parent[J]. Euphytica, 2013, 189(2):293-307.
[17]邱丽娟.大豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006.(Qiu L J. descriptors and date standard for soybean (Glycine max L Merr)[M]. Beijing: Chinese Agricultural Press,2006).
[18]Doyle J J. Isolation of plant DNA from fresh tissue [J].Focus, 1990, 12: 13-15.
[19]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL [J]. Genetics, 1995, 141(3): 1147.
[20]McCough S R, Doerge R W.QTL mapping in rice [J]. Trends in Genetics,1995, 11(12): 482-487.
[21]Howell P M, Marshall D F, Lydiate D J.Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection[J]. Genome,1996,39:558-567.
[22]He Q Y, Yang H Y, Xiang S H,et al. Fine mapping of the genetic locus L1 conferring black pods using a chromosome segment substitution line population of soybean[J].Plant Breeding, 2015, 134(4): 437-445.
[23]王军, 朱金燕, 周勇, 等. 基于染色体单片段代换系的水稻粒形QTL定位[J].作物学报, 2013, 39(4): 617-625.(Wang J, Zhu J Y, Zhou Y, et al. Mapping of QTLs for grain shape using chromosome single segment substitution lines in rice (Oryza sativa L)[J].Acta Agronomica Sinica, 2013, 39(4): 617-625.)
[24]张晓祥, 时夏, 孙高阳, 等. 利用单片段代换系检测玉米花期相关性状QTL[J]. 河南农业大学学报, 2015, 49(2): 140-144. (Zhang X X, Shi X, Sun G Y, et al. QTL analysis of flowering related traits based on the single segment substitution lines in maize[J]. Journal of Henan Agricultural University, 2015, 49(2): 140-144.)
[25]Ebitani T, Takeuchi Y, Nonoue Y, et al.Construction and evaluation of chromosome segmentsubstitution lines carrying overlapping chromosome segments of Indica rice cultivar ‘Kasalath’ in a genetic background of Japonica elite cultivar ‘Koshihikari’ [J]. Breeding Science, 2005, 55(1): 65-73.
[26]张金巍, 韩粉霞, 陈明阳, 等. 利用选择回交导入群体定位大豆蛋白质含量QTL[J].中国油料作物学报, 2015, 37(4): 433-442.(Zhang J W, Han F X, Chen M Y, et al. Detection of protein content QTL with random and extremely selected BC-2F2 populations in soybean[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 433-442.)
[27]蒋洪蔚, 李灿东, 刘春燕, 等. 大豆导入系群体芽期耐低温位点的基因型分析及QTL定位[J].作物学报, 2009, 35(7): 1268-1273.(Jiang H W, Li C D, Liu C Y, et al. Genotype analysis and QTL mapping for tolerance to low temperature in germination by introgression lines in soybean[J].Acta Agronomica Sinica, 2009, 35(7): 1268-1273.)
[28]Yao D, Liu Z Z, Zhang J, et al. Analysis of quantitative trait loci for main plant traits in soybean[J]. Genetics and Molecular Research, 2015, 14 (2): 6101-6109.
[29]Yan L, Li Y H , Yang C Y, et al.Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja[J].Plant Breeding, 2014, 133: 632-637.
[30]Liu W X, Kim M Y, van K, et al. QTL identification of yield-related traits and their association with flowering and maturity in soybean[J]. Journal of Crop Science and Biotechnology, 2011, 14 (1): 65-70.
[31]Toda K, Hirata K, Masuda R,et al.Relationship between mutations of the pectin methylesterase gene in soybean and the hardness of cooked beans[J].Breeding Science, 2014, 64(4):362-370.

Memo

Memo:
-
Last Update: 2016-09-24