|Table of Contents|

Stability Analysis of QTL Associated for Seed Shape Traits in Soybean ContentAcross Different Generations(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2016年04期
Page:
581-586
Research Field:
Publishing date:

Info

Title:
Stability Analysis of QTL Associated for Seed Shape Traits in Soybean ContentAcross Different Generations
Author(s):
ZHANG Ji-yuGUO JieCHENG Feng-naLI WenZHAO XueHAN Ying-pengLI Wen-binTENG Wei-li
Soybean Research Institute,Northeast Agricultural University /Key Laboratory of Soybean Biology in Chinese Ministry of Education /Key Laboratory ofSoybean Biology and Breeding /Genetics of Chinese Agriculture Ministry,Harbin 150030,China
Keywords:
Soybean RILs Seed Shape QTL Genetic Stability
PACS:
S565. 1
DOI:
10.11861/j.issn.1000-9841.2016.04.0581
Abstract:
A RILs population derived from a cross between Dongnong 46 and L-100 was used in the experiment. The differentgeneration populations were evaluated in three locations( Harbin,Hulan and Acheng) ,in 2013 and 2014 using single-enviromentQTL analysis and multi-enviroment joint analysis. The results showed that,thirteen QTLs were detected associated withseed shape in single-enviroment QTL analysis,located in 5,9,12,15,and 18 linkage group. Two QTLs were associatedwith seed length,explained 21. 61% - 26. 81% of the phenotypic variation. Five QTLs were associated with seed width,explained7. 28% - 18. 38% of the phenotypic variation. Six QTLs were associated with seed thick,explained 10. 19% -18. 44% of the phenotypic variation. The QTLs located in the marker interval of Sat_122 - Satt052 associated both seed lengthand seed thick. The QTLs located in the marker interval of Sat_119 - Satt588,Satt192 - Satt568 and Sat_401 - Satt192 associatedboth seed width and seed thick,showed pleiotropy. Fifteen QTLs were detected associated with seed shape in multi-enviromentjoint analysis. Nine QTLs were detected in both methods,showed genetic stability.

References:

1] Hyten D L,Pantalone V R,Sams C E,et al. Seed quality QTL ina prominent soybean population[J]. Theoretical and Applied Genetics,2004,109: 552-561.

[2] Wilson D O. Storage of orthodox seeds[M]/ /Basra A S. Seedquality: Basic mechanisms,agricultural implications. New York:Food Products Press,1995: 173-208.
[3] 来永才,李炜,王庆祥,等. 黑龙江省野生大豆高异黄酮新种质创新利用Ⅰ异黄酮含量及与籽粒相关性状的分析[J]. 大豆科学,2006,25( 4) : 414-416. ( Lai Y C,Li W,Wang Q X,et al. Innovation and utilization of new high isoflavone resource ofwild soybean in Heilongjiang Province: I. Analysis of isoflavonecontent and relevant of characters[J]. Soybean Science,2006,25( 4) : 414-416. )
[4] 梁慧珍,王树峰,余永亮,等. 6 种大豆粒形性状的QTL 定位[J]. 河南农业科学,2008( 9) : 45-51. ( Liang H Z,Wang S F,Yu Y L,et al. [J]. QTL mapping of 6 seed shape traits in soybean[J]. Henan Agriculture Sciences,2008( 9) : 45-51. )
[5] 梁慧珍,余永亮,杨红旗,等. 不同环境下大豆荚粒性状的遗传与QTL 分析[J]. 中国农业科学,2012,45 ( 13 ) : 2568-2579. ( Liang H Z,Yu Y L,Yang H Q,et al. Genetic analysisand QTL mapping of pod-seed traits in soybean under different environments[J]. Scientia Agricultra Sinica,2015,45( 13) : 2568-2579. )
[6] Salas P,Oyarzo-Llaipen J C,Wang D,et al. Genetic mapping ofseed shape in three populations of recombinant inbred lines of soybean(Glycine max L. Merr. ) [J]. Theoretical and Applied Genetic,2006,113: 1459-1466.
[7] 刘晓芬. 大豆栽培品种群体粒形性状及百粒重的关联分析[D]. 南京: 南京农业大学,2010. ( Liu X F. Association analysisfor seed shape traits and 100-seed weight in soybean ( Glycinemax L. Merr. ) [M]. Nanjing: Nanjing Agricultural University,2010. )
[8] Moongkanna J,Nakasathien S,Novitzky W P,et al. SSR markerslinking to seed traits and total oil content in soybean[J]. ThaiJournal of Agricultural Science,2011,44( 4) : 233-241.
[9] Xu Y,Li H N,Li G J,et al. Mapping quantitative trait loci forseed size traits in soybean( Glycine max L. Merr. ) [J]. Theoreticaland Applied Genetics,2011,122: 581-594.
[10] 刘春燕,齐照明,韩冬伟,等. 大豆产量相关性状的多年多点QTL 分析[J]. 东北农业大学学报,2010,41( 11) : 1-9. ( LiuC Y,Qi Z M,Han D W,et al. QTL analysis of yield componentson soybean under different environment[J]. Journal of NortheastAgricultural University,2010,41( 11) : 1-9. )
[11] 楼巧君,陈亮,罗利军. 三种水稻基因组DNA 快速提取方法的比较[J]. 分子植物育种,2005,3( 5) : 749-752. ( Lou Q J,Chen L,Luo L J. Comparison of three rapid methods of DNA extractionfrom rice[J]. Molecular Plant Breeding,2005,3 ( 5) :749-752. )
[12] 梁慧珍,余永亮,杨红旗,等. 大豆粒形性状主效QTL、环境互作和上位性检测[J]. 中国农业科学,2013,46 ( 24) : 5081-5088. ( Liang H Z,Wang S F,Yu Y L,et al. Main,environmentallyinteracted and epistatic QTL for seed shape traits in soybean[J]. Scientia Agricultra Sinica,2013,46 ( 24 ) : 5081-5088. )
[13] 刘顺湖,周瑞宝,喻德跃,等. 大豆蛋白质有关性状的QTL 定位[J]. 作物学报,2009,35( 12) : 2139-2149. ( Liu S H,ZhouR B,Yu D Y,et al. QTL mapping of protein related traits in soybean[Glycine max ( L. ) Merr. ][J]. Acta Agronomica Sinica,2009,35( 12) : 2139-2149. )
[14] 陈强. 大豆籽粒相关性状QTL 定位分析[M]. 河北: 河北科技师范学院,2014. ( Chen Q. QTL mapping for seed relatedtraits in soybean ( Glycine max L. Merr. ) [M]. Hebei: HebeiNormal University of Science & Technology,2014. )
[15] 杨占烈,戴高兴,翟荣荣,等. 多环境条件下超级杂交稻协优9308 重组自交系群体粒形性状的QTL 分析[J]. 中国水稻科学,2013,27( 5) : 482-490. ( Yang Z L,Dai G X,Zhai R R,etal. QTL analysis of rice grain shape traits by using recombinant inbredlines from super hybrid rice Xieyou 9308 in Multi-environments[J]. Chinese Journal of Rice Science,2013,27( 5) : 482-490. )

Memo

Memo:
-
Last Update: 2016-08-22