|Table of Contents|

Research Status and Application Prospect of Soybean Transposon(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2016年03期
Page:
512-518
Research Field:
Publishing date:

Info

Title:
Research Status and Application Prospect of Soybean Transposon
Author(s):
LIU Yu-yuanFU Ai-genXU Min
College of Life Science,Northwest University,Xi’an 710069,China
Keywords:
Soybean Transposon Mutant library Functional genomics
PACS:
S565. 1
DOI:
10.11861/j.issn.1000-9841.2016.03.0512
Abstract:
There are about 50 000 genes in the soybean genome,and the function of majority genes remains to be determined.A comprehensive insertion mutant library could provide a platform for the functional characterization of unknown genes in soybeangenome,and it could also contribute a collection of soybean germplasm resources with a variety of breeding values.Transposon works as a good tool for creating insertion mutants. In soybean,approximately 50%-60% of the genome are transposons,including retrotransposons and DNA transposons,while except DNA transposable elements Tgm9,all the elements areinactive. Many mutants were verified through transposon tagging experiment using T322,a soybean line containing activeTgm9. Although several mutant libraries were made using transposons from other species through gene transformation,developingnative elements and improving their activity and consistence shall provide a new method in soybean mutagenesis. In thispaper,we introduced transposons identified in soybean and the recent progress on applications of transposons in creating soybeaninsertion mutants for soybean functional genomics studies and germplasm renovation.

References:

[1] Shoemaker R C,Schlueter J,Doyle J J. Paleopolyploidy and geneduplication in soybean and other legumes[J]. Current Opinion inPlant Biology,2006,9: 104-109.

[2] Schmutz J,Cannon S,Schlueter J,et al. Genome sequence of thepalaeopolyploid soybean[J]. Nature,2010,463: 178-183.
[3] Du J,Grant D,Tian Z,et al. SoyTEdb: A comprehensive databaseof transposable elements in the soybean genome[J]. BioMedCentral Genomics,2010,11: 113.
[4] Libault M,Farmer A,Joshi T,et al. An integrated transcriptomeatlas of the crop model Glycine max,and its use in comparative analysesin plants[J]. Plant Journal,2010,63: 86-99.
[5] Hancock C N,Zhang F,Floyd K,et al. The rice miniature invertedrepeat transposable element mPing is an effective insertionalmutagen in soybean[J]. Plant Physiology,2011,157: 552-562.
[6] Alonso J M,Stepanova A N,Leisse T J,et al. Genome-wide insertionalmutagenesis of Arabidopsis thaliana[J]. Science,2003,301: 653-657.
[7] An S,Park S,Jeong D H,et al. Generation and analysis of endsequence database for T-DNA tagging lines in rice[J]. PlantPhysiology,2003,133: 2040-2047.
[8] Jung K H,An G,Ronald P C. Towards a better bowl of rice: Assigningfunction to tens of thousands of rice genes[J]. Nature ReviewsGenetics,2009,9: 91-101.
[9] Fu F F,Ye R,Xu S P,et al. Studies on rice seed quality throughanalysis of a large-scale T-DNA insertion population[J]. Cell Research,2009,19: 380-391.
[10] Parrott W A,Clemente T E. Transgenic soybean[M]/ /Specht JE,Boerma H R. Soybeans: Improvement, production, anduses. Madison,WI: ASA-CSASSSA,2004: 265-302.3 期刘宇原等: 大豆转座子的研究现状及应用前景517
[11] Mathieu M,Winters E K,Kong F M,et al. Establishment of asoybean ( Glycine max Merr. ( L) ) transposon-based mutagenesisrepository[J]. Planta,2009,229: 279-289.
[12] Walbot V. Saturation mutagenesis using maize transposons[J].Current Opinion in Plant Biology,2000,3: 103-107.
[13] Wang N,Long T,Yao W,et al. Mutant resources for the functionalanalysis of the rice genome[J]. Molecular Plant,2013,6:596-604.
[14] DeNicola G M,Karreth F A,Adams D J,et al. The utility oftransposon mutagenesis for cancer studies in the era of genome editing[J]. Genome Biology,2015,16: 229.
[15] Horton B N,Kumar A. Genome-wide synthetic genetic screeningby transposon mutagenesis in Candida albicans[J]. Methods inMolecular Biology,2015,1279: 125-135.
[16] 王文静,马浩然,李加纳,等. Ac /Ds 转座子激活标签技术研究进展[J]. 中国农业科学,2013,46 ( 14 ) : 2845-2855.( Wang W J,Ma H R,Li J N,et al. Research progresses in Ac /Ds transposon activation tagging system [J]. Scientia AgriculturaSinica,2013,46( 14) : 2845-2855. )
[17] Fedoroff N V. The discovery of transposable elements[M]/ /KungS D,Yang S F. Discoveries in plant biology Vol. 1. Singapore:World Scientific,1998: 89-104.
[18] Slotkin R K,Martienssen R. Transposable elements and the epigeneticregulation of the genome[J]. Nature Reviews Genetics,2007,8: 272-285.
[19] Fedoroff N V. Transposable elements,epigenetics,and genome evolution[J]. Science,2012,338: 758-767.
[20] Jarvik T,Lark K G. Characterization of Soymar1,a mariner elementin soybean[J]. Genetics,1998,149: 1569-1574.
[21] Kumar A,Bennetzen J L. Plant retrotransposons[J]. Annual Reviewof Genetics,1999,33: 479-532.
[22] Wright D A,Voytas D F. Athila4 of Arabidopsis and Calypso ofsoybean define a lineage of endogenous plant retroviruses[J]. GenomeResearch,2002,12: 122-131.
[23] Bell N M,Lever A M. HIV Gag polyprotein: Processing and earlyviral particle assembly[J]. Trends Microbiology,2013,21( 3) :136-44.
[24] Wicker T,Sabot F,Hua V A,et al. A unified classification systemfor eukaryotic transposable elements[J]. Nature Reviews Genetics,2007,8( 12) : 973-982.
[25] Brouha B,Schustak J,Badge R M,et al. Hot L1s account for thebulk of retrotransposition in the human population[J]. Proceedingsof the National Academy of Sciences,USA,2003,100:5280-5285.
[26] Laten H M,Majumdar A,Gaucher E A. SIRE-1,a copia /Ty1-likeretroelement from soybean,encodes a retroviral envelope-like protein[J]. Proceedings of the National Academy of Sciences,USA,1998,95: 6897-6902.[27] Havecker E R,Voytas D F. The soybean retroelement SIRE1 usesstop codon suppression to express its envelope-like protein[J]. EuropeanMolecular Biology Organization Reports, 2003, 4:274-277.
[28] Yano S T,Panbehi B,Das A,et al. Diaspora,a large family ofTy3-gypsy retrotransposons in Glycine max,is an envelope-lessmember of an endogenous plant retrovirus lineage[J]. Bio MedCentral Evolutionary Biology,2005,5: 30.[29] Du J C,Tian Z X,Bowen N J,et al. Bifurcation and enhancementof autonomous-nonautonomous retrotransposon partnershipthrough LTR swapping in soybean[J]. Plant Cell,2010,22( 1) :48-61.
[30] 刘静,杜建厂. 植物LTR-反转座子中Orf1 基因的分子进化[J]. 遗传,2013,35( 9) : 1117-1124. ( Liu J,Du J C. Molecularevolution of Orf1 gene in plant LTR-retrotransposons[J]. Hereditas,2013,35( 9) : 1117-1124. )
[31] Kapitonov V,Jurka J. Rolling-circle transposons in eukaryotes[J]. Proceedings of the National Academy of Sciences,USA,2001,98: 8714-8719.
[32] Feschotte C,Zhang X,Wessler S. Miniature inverted-repeat transposableelements ( MITEs) and their relationship with establishedDNA transposons in Mobile DNA II[J]. American Society for Microbiology,2002,1147-1158.
[33] Rhodes P R,Vodkin L O. Organization of the Tgm family of transposableelements[J]. Genetics,1988,120: 597-604.
[34] Zabala G,Vodkin L O. The wp mutation of Glycine max carries agene-fragment-rich transposon of the CACTA superfamily[J]. ThePlant Cell,2005,17: 2619-2632.
[35] Zabala G,Vodkin L. A putative autonomous 20. 5 kb-CACTAtransposon insertion in an F3’ H allele identifies a new CACTAtransposon subfamily in Glycine max[J]. Bio Med Central PlantBiology,2008,8: 124.
[36] Xu M,Brar H K,Grosic S,et al. Excision of an active CACTALiketransposable element from DFR2 causes variegated flowers insoybean [Glycine max( L. ) Merr. ][J]. Genetics,2010,184:53-63.
[37] Takahashi R,Morita Y,Nakayama M,et al. An active CACTAfamilytransposable element is responsible for flower variegation inwild soybean Glycine soja[J]. Plant Genome,2012,5: 62-70.
[38] Palmer R G,Groose R W,Weigelt H D,et al. Registration of agenetic stock ( w4-m w4-m) for unstable anthocyanin pigmentationin soybean[J]. Crop Science,1990,30: 1376-1379.
[39] Johnson E O C,Stephens P A,Fasoula D A,et al. Instability of anovel multicolored flower trait in inbred and outcrossed soybeanline[J]. The Journal of Heredity,1998,89: 508-515.
[40] Chandlee J M,Vodkin L O. Unstable expression of a soybean geneduring seed coat development[J]. Theoretical and Applied Genetics,1989,77: 587-594.
[41] Chandlee J M,Vodkin L O. Unstable genes affecting chloroplastdevelopment in soybean[J]. Developmental Genetics,1989,10:518 大豆科学3 期532-541.
[42] Cooper J L,Till B J,Laport R G,et al. TILLING to detect inducedmutations in soybean[J]. Bio Med Central Plant Biology,2008,8: 9.
[43] Bolon Y T,Haun W J,Xu W W,et al. Phenotypic and genomicanalyses of a fast neutron mutant population resource in soybean[J]. Plant Physiology,2011,156: 240-253.
[44] Galbiati M,Moreno M A,Nadzan G,et al. Large-scale T-DNAmutagenesis in Arabidopsis for functional genomic analysis[J].Functional and Integrative Genomics,2000,1: 25-34.
[45] Jeon J S,Lee S,Jung K H,et al. T-DNA insertional mutagenesisfor functional genomics in rice[J]. Plant Journal,2000,22: 561-570.
[46] 吴迪,刘斌,侯文胜,等. 转座子标签法及其在大豆功能基因组研究中的应用[J]. 大豆科学,2007,26( 2) : 254-258. ( WuD,Liu B,Hou W S,et al. Transposon tagging and ITS potentialuse in functional genomics study of soybean[J]. Soybean Science,2007,26( 2) : 254-258. )
[47] Cui Y Y,Barampuram S,Stacey M G,et al. Tnt1 retrotransposonmutagenesis: A tool for soybean functional genomics[J]. PlantPhysiology,2013,161: 36-47.
[48] Palmer R G,Hedges B R,Benavente R S,et al. w4-mutable linein soybean[J]. Developmental Genetics,1989,10: 542-551.
[49] Naito K,Cho E,Yang G J,et al. Dramatic amplification of a ricetransposable element during recent domestication[J]. Proceedingsof the National Academy of Science, USA, 2006, 103:17620-17625.
[50] Hancock C N,Zhang F,Wessler S R. Transposition of the Tourist-MITE mPing in yeast: An assay that retains key features of catalysisby the class 2 PIF/Harbinger superfamily[J]. Mobile DNA,2010,1: 5.
[51] Xu M,Palmer R G. Genetic analysis and molecular mapping of apale flower allele at the W4 locus in soybean[J]. Genome,2005,48: 334-340.
[52] Xu M,Palmer R G. Molecular mapping of k2 mdh1-ny20,an unstablechromosomal region in soybean [Glycine max( L. ) Merr. ][J]. Theoretical and Applied Genetics,2005,111: 1457-1465.
[53] Kato K K,Palmer R G. Molecular mapping of the male-sterile,female-sterile mutant gene ( st8) in soybean[J]. Journal of Heredity,2003,94: 425-428.
[54] Kato K K,Palmer R G. Molecular mapping of four ovule lethalmutants in soybean[J]. Theoretical and Applied Genetics,2004,108: 577-585.
[55] Palmer R G,Zhang L,Huang Z,et al. Allelism and molecularmapping of soybean necrotic root mutants[J]. Genome,2008,51: 243-250.
[56] Raval J,Baumbach J,Ollhoff A R,et al. A candidate male-fertilityfemale-fertility gene tagged by the soybean endogenous transposon,Tgm9[J]. Functional and Integrative Genomics,2013,13:67-73.
[57] Groose R W,Schulte S M,Palmer R G. Germinal reversion of anunstable mutation for anthocyanin pigmentation in soybean[J].Theoretical and Applied Genetics,1990,79: 161-167.
[58] Song Z Y,Tian J L,Fu W Z,et al. Screening Chinese soybeangenotypes for Agrobacterium-mediated genetic transformation suitability[J]. Journal of Zhejiang University Science B,2013,14:289-198.
[59] Olhoft P M,Flagel L E,Donovan C M,et al. Efficient soybeantransformation using hygromycin B selection in the cotyledonarynodemethod[J]. Planta,2003,216: 723-735.
[60] 侯升文,胡继海,李明姝,等. 世界大豆生产发展现状与趋势[J]. 农业与技术,2013,30( 2) : 1-3. ( Hou S W,Hu J H,LiM S,et al. The present situation and the trend of development ofthe world soybean production[J]. Agriculture and Technology,2013,30( 2) : 1-3. )
[61] 杨红旗. 我国大豆产业现状分析及问题探讨[J]. 中国种业,2010( 4) : 18-20. ( Yang H Q. Current situation and problems ofsoybean industry in China[J]. China Seed Industry,2010 ( 4) :18-20. )

Memo

Memo:
-
Last Update: 2016-07-24