|Table of Contents|

Epistatic Analysis for Protein Content Using Wild Soybean Backcross IntrogressiveLines(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2016年03期
Page:
353-359
Research Field:
Publishing date:

Info

Title:
Epistatic Analysis for Protein Content Using Wild Soybean Backcross IntrogressiveLines
Author(s):
YIN Yan-bin1PAN Xiao-cheng2JIANG Hong-wei3WEI Si-ming1LIU Chun-yan3HU Guo-hua3CHENQing-shan1
1. Agronomy College,Northeast Agricultural University,Harbin 150030,China;?
2. Sideline Base for 65301 Force of Heilongjiang,Wudalianchi164100,China;?
3. Land Reclamation Research and Breeding Center of Heilongjiang,Harbin 150090,China
Keywords:
Wild soybean Backcross introgressive lines Protein content Epistasis analysis
PACS:
S565. 1
DOI:
10.11861/j.issn.1000-9841.2016.03.0353
Abstract:
The wild soybean backcross introgressive lines BC3F3was constructed with cultural soybean Suinong 14 as recurrentparent and wild soybean ZYD00006 as donor parent in this study. One hundred and twenty one polymorphism SSR markers betweenthe parents were used to analyze the genotypes of 114 lines. The line with double introgression homozygote loci from wildsoybean plants ( B-B loci) and Suinong 14 were analyzed with T-test. With P≤0. 05 as threshold value,108 B-B locus weresignificant on phenotype. And epistasis effect was found at 28 B-B locus. Among them, 10 were positive and 18 were negative.The result of this study have revealed the importance of epistasis effect on soybean protein content,meanwhile the informationof these locus will be the theoretical basis for high protein of soybean breeding.

References:

[1] Cinta H S,Marsolais F,Saravitz C,et al. Free amino acid profilessuggest a possible role for sparagines in the control of storageproductaccumulation in developing seeds of low-and high-proteinsoybean lines [J] . Experimental Botany,2005,56 ( 17 ) :1951-1963.

[2] Krishman H B,Jiang G,Krishnan A H,et al. Seed storage proteincomposition of non-nodulating soybean ( Glycine max( L) Merry)and its influence on protein quality[J]. Plant Science,2000,157( 2) : 191-199.
[3] Orf J H,Chase K,Javik T,et al. Genetics of soybean agronomictraits: I, comparison of three related recombinant inbred population[J]. Crop Science,1999,39: 1642-1651.
[4] Li Z K. Molecular analysis of epistasis affecting complex traits inmolecular analysis of complex traits[M]. Molecular Dissection ofComplex Traits,1997: 119-130.
[5] Yu S B,Li J X,Xu C G,et al. Importance of epistasis as the geneticbasis of heterosis in an elite rice hybrid[J]. Proceedings ofthe National Academy of Sciences,1997,94( 17) : 9226-9231.
[6] 曹钢强,朱军,何慈信,等. 水稻株高上位性互作效应和QE 互作效应的QTL 遗传研究( 英文) [J]. 遗传学报,2001,28( 2) :135-143. ( Cao G Q,Zhu J,He C X,et al. QTL analysis for epistaticeffects and QTL × evironment interaction effects on finalheight of rice[J]. Acta Genetica Sinica,2001,28( 2) : 135-143.
[7] 曹钢强,朱军,何慈信,等. 水稻穗长上位性互作效应和QE 互作效应的QTL 遗传研究( 英文) [J]. 浙江大学学报( 农业与生命科学版) ,2001,27( 1) : 55-61. ( Cao G Q,Zhu J,He C X,etal. Study on epistatic effects and QTL × environment interactioneffects of QTLs for panicl length in rice[J]. Journal of Zhejiang University(Agriculture & Life Science) ,2001,27( 1) : 55-61. )
[8] 任德勇,何光华,凌英华,等. 基于单片段代换系的水稻穗长QTL 加性及其上位性效应[J]. 植物学报,2010,45 ( 6) : 662-669. ( Ren D Y,He G H,Ling Y H,et al. Analysis of quantitativetrait loci additive and epistasis effects for panicle length withsingle segment substitution lines in rice[J]. Chinese Bulletin ofBotany,2010,45( 6) : 662-669. )
[9] 高用明,朱军,宋佑胜,等. 水稻永久F2群体抽穗期QTL 的上位性及其与环境互作效应的分析[J]. 作物学报,2004,30( 9) : 849-854. ( Gao Y M,Zhu J,Song Y S,et al. Use of permanentF2 population to analyze epistasis and their interaction effects3 期尹燕斌等: 野生大豆导入系对蛋白质含量相关位点的上位性分析359with environments for QTL controlling heading date in rice [J].Acta Agronomica Sinica,2004,30( 9) : 849-854. )
[10] 杨自凤,朱海涛,刘自强,等. 基于单片段代换系的水稻抽穗期QTL 上位性研究[J]. 华南农业大学,2014,35( 6) : 24-28.( Yang Z F,Zhu H T,Liu Z Q,et al. Epistatic analysis of QTLon heading date in rice using single segment substitution lines[J]. Journal of South China Agricultural University,2014,35( 6) :24-28. )
[11] 刘书旎,张华,柳絮,等. 基于单片段代换系的水稻抽穗期QTL 上位性互作分析[J]. 山东农业科学,2015,47 ( 3) : 1-4.( Liu S Y,Zhang H,Liu X,et al. Epistasis interaction analysis ofQTL for heading date in rice using single segment substitution lines[J]. Shandong Agricultural Sciences,2015,47( 3) : 1-4. )
[12] Yu S B,Li J X,Xu C G,et al. Importance of epistasis as the geneticbasis of heterosis in an elite rice hybrid[J]. Proceedings ofthe National Academy of Sciences,1997,94( 17) : 9226-9231.
[13] Xing Y,Tan Y,Hua J,et al. Characterization of the maineffects,epistatic effects and their environmental interactions ofQTLs on the genetic basis of yield traits in rice[J]. Theoretical andApplied Genetics,2002,105( 2-3) : 248-257.
[14] 沈圣泉,庄杰云,王淑珍,等. 稻米透明度QTLs 主效应、上位性互作效应和G × E 互作效应检测[J]. 浙江大学学报( 农业与生命科学版) ,2006 ( 4) : 367-371. ( Shen S Q,Zhuang J Y,Wang S Z, et al. Analysis of QTLs with genetic main effect epistaticand G × E interaction effect of rice transparency[J]. Journal ofZhejiang University( Agricuitural & Life Science) ,2006( 4) : 367-371. )
[15] 鄢宝,王岩,高冠军,等. 水稻糙米蛋白质含量QTL 定位及上位性分析[J]. 分子植物育种,2012 ( 5) : 594-599. ( Yan B,Wang Y,Gao G J,et al. QTL mapping and epistasis analysis ofthe protein content in brown rice[J]. Molecular Plant Breeding,2012( 5) : 594-599. )
[16] 范冬梅,孙殿君,马占洲,等. 多种环境下大豆单株粒重QTL的定位与互作分析[J]. 作物学报,2013,39( 6) : 1021-1029.( Fan D M,Sun D J,Ma Z Z,et al. QTL mapping and interactionanalysis of seed weight per plant in soybean among different environments[J]. Acta Acronimica Sina,2013,39( 6) : 1021-1029. )
[17] 杨喆,孙亚男,齐照明,等. 大豆荚数性状相关QTL 的加性、上位性及QE 互作效应分析[J]. 中国农业大学学报,2013,18( 3) : 1-13. ( Sun Z,Sun Y N,Qi Z M,et al. Analysis of additiveeffect epistatic and QE interaction effect for QTL of pod numbertraits in soybean[J]. Journal of China Agricultural University,2013,18( 3) : 1-13. )
[18] 毛彦芝,蒋洪蔚,刘春燕,等. 用高世代回交群体定位大豆荚粒性状的QTL 及上位性分析[J]. 大豆科学,2014,33 ( 4) :467-472. ( Mao Y Z,Jiang H W,Liu C Y,et al. QTL mappingand epistasis analysis of pods per plant and seeds per plant with anadvanced backcross population [J]. Soybean Science,2014,33( 4) : 467-472. )
[19] 梁慧珍,余永亮,杨红旗,等. 大豆产量及主要农艺性状QTL上位性互作和环境互作分析[J]. 作物学报,2014,40( 1) : 37-44. ( Liang H Z,Yu Y L,Yang H Q,et al. Epistatic effects andQTL × environment interaction effects of QTLs for yield and agronomictraits in soybean[J]. Acta Agronomic Sinca,2014,40( 1) :37-44. )
[20] 梁慧珍,余永亮,杨红旗,等. 大豆小区产量及相关性状QTL间的上位性和环境互作效应[J]. 植物学报,2014,49( 3) : 273-281. ( Liang H Z,Yu Y L,Yang H Q,et al. Epistatic effects andquantitative trait loci ( QTL ) × environment ( QE ) interactioneffects for yield per plot and botanical traits in soybean [J]. ChineseBulletin of Botany,2014,49( 3) : 273-281. )
[21] 梁慧珍,余永亮,杨红旗,等. 大豆叶片性状和叶绿素含量QTL 的上位性和环境互作效应[J]. 作物学报,2015,41( 6) :889-899. ( Liang H Z,Yu Y L,Yang H Q,et al. Epistatic andQTL × environment interaction effects of QTLs for leaf taits and leafchlorophy II content in soybean[J]. Acta Agronomica Sinica,2015,41( 6) : 889-899. )
[22] 单大鹏,朱荣胜,陈立君,等. 大豆蛋白质含量相关QTL 间的上位效应和QE 互作效应[J]. 作物学报,2009,35( 1) : 41-47. ( Shan D P,Zhu R S,Chen L J,et al. Epistatic effects andQE interaction effects of QTLs for protein content in soybean[J].Acta Acronomica Sina,2009,35( 1) : 41-47. )
[23] 单大鹏,齐照明,邱红梅,等. 大豆油分含量相关的QTL 间的上位效应和QE 互作效应[J]. 作物学报,2008,34( 6) : 952-957. ( Shan D P,Qi Z M,Qiu H M,et al. Epistatic effects andQE interaction effects of QTLs for oil content in soybean[J]. ActaAcronomica Sicina,2008,34( 6) : 952-957. )
[24] 侯萌,齐照明,陈庆山,等. 大豆蛋白质和油份含量QTL 定位及互作分析[J]. 中国农业科学,2014,47 ( 13 ) : 2680-2689.( Hou M,Qi Z M,Chen Q S,et al. QTL mapping and interractionanalysis of seed protein and oil content in soybean[J]. ScientiaAgriclutura Sinica,2014,47( 13) : 2680-2689. )
[25] Eshed Y,Zamir D. Less-than-additive epistatic interactions ofquantitative trait loci in tomato[J]. Genetics,1996,143 ( 4) :1807-1817.

Memo

Memo:
-
Last Update: 2016-06-23