|Table of Contents|

Regulation of Ethylene on Plant Growth, Development and Nodulation in Legumes(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2016年02期
Page:
220-225
Research Field:
Publishing date:

Info

Title:
Regulation of Ethylene on Plant Growth, Development and Nodulation in Legumes
Author(s):
SHEN Ming CHEN Shou-yi ZHANG Jin-song
State Key Laboratory of Plant Genomics/Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
Keywords:
Ethylene Legumes Growth and development Nodulation
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2016.02.0330
Abstract:
As an important gaseous phytohormone, ethylene plays important roles in plant growth, development and responses to external environmental cues. Ethylene regulates not only the triple response of etiolated seedlings, but also the growth and development of seedlings under light, which includes the senescence and abscission of leaf and flower in legumes. Legumes can establish a symbiotic relationship with rhizobia, resulting in the formation of root nodules that can fix nitrogen. Ethylene can inhibit or stimulate the nodulation depending on the differences of nodule development or genotypes of legumes.The crosstalk between ethylene and other phytohormones also plays a regulatory role in nodulation.This article reviewed the current advances in the ethylene regulation of growth, development and nodulation in legumes.The research prospect of ethylene signaling in legumes were also discussed.

References:

[1]Bleecker A B, Patterson S E.Last exit: Senescence, abscission, and meristem arrest in Arabidopsis[J].Plant Cell, 1997, 9(7): 1169-1179.

[2]Dugardeyn J, van der Straeten D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation[J].Plant Science, 2008, 175(1-2): 59-70.
[3]Bleecker A B, Estelle M A, Somerville C, et al.Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J]. Science, 1988, 241(4869): 1086-1089.
[4]Ecker J R. The ethylene signal transduction pathway in plants[J].Science, 1995, 268(5211): 667-675.
[5]Chang C, Stadler R. Ethylene hormone receptor action in Arabidopsis[J].Bioessays, 2001, 23(7): 619-627.
[6]Ju C L, Yoon G M, Shemansky J M, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19486-19491.
[7]Qiao H, Shen Z X, Huang S C, et al. Processing and subcellular trafficking of ERtethered EIN2 control response to ethylene gas[J].Science, 2012, 338(6105): 390-393.
[8]Wen X, Zhang C L, Ji Y S, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Research, 2012, 22(11): 1613-1616.
[9]Ji Y S, Guo H W. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling[J]. Molecular Plant, 2013, 6(1): 11-14.
[10]Ju C, Chang C. Mechanistic insights in ethylene perception and signal transduction[J].Plant Physiology, 2015, 169(1): 85-95.
[11]Li W, Ma M, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3):670-683.
[12]Merchante C, Brumos J, Yun J, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2[J]. Cell, 2015, 163(3): 684-697.
[13]Lee K H, Larue T A. Exogenous ethylene inhibits nodulation of Pisum SativumL. Cv Sparkle[J].Plant Physiology, 1992b, 100(4): 1759-1763.
[14]Weller J L, Foo E M, Hecht V, et al. Ethylene signaling influences light-regulated development in pea[J]. Plant Physiology, 2015, 169(1): 115-124.
[15]Penmetsa R V, Cook D R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont[J].Science, 1997, 275(5299): 527-530.
[16]Penmetsa R V, Uribe P, Anderson J, et al. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations[J]. Plant Journal, 2008, 55(4): 580-595.
[17]Lohar D, Stiller J, Kam J, et al. Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus[J].Annals of Botany, 2009, 104(2): 277-285.
[18]Gresshoff P M, Lohar D, Chan P K, et al.Genetic analysis of ethylene regulation of legume nodulation[J]. Plant Signaling & Behavior, 2009, 4(9): 818-823.
[19]Nukui N, Ezura H, Minamisawa K. Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A-enhances formation of infection threads and nodule primordia[J]. Plant and Cell Physiology, 2004, 45(4): 427-435.
[20]Chan P K, Biswas B, Gresshoff P M. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected ‘hypernodulation’ response in Lotus japonicus[J]. Journal of Integrative Plant Biology, 2013, 55(4): 395-408.[21]程云清.乙烯调控对大豆营养生长与生殖生长影响研究[D].大连:大连理工大学, 2009.(Cheng Y Q. Effeets of ethylene regulation on the vegetative and reproductive growth of soybean (Glycine max (L) Merr) [D].Dalian: Dalian University of Technology, 2009.)
[22]Hoffman T, Schmidt J S, Zheng X Y, et al. Isolation of ethyleneinsensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance[J]. Plant Physiology, 1999, 119(3): 935-949.[23]Schmidt J S, Harper J E, Hoffman T K, et al.Regulation of soybean nodulation independent of ethylene signaling[J]. Plant Physiology, 1999, 119(3): 951-959.
[24]Bent A F, Hoffman T K, Schmidt J S, et al. Disease and performance-related traits of ethylene insensitive soybean[J]. Crop Science, 2006, 46(2): 893-901.
[25]沈鸣.大豆乙烯反应突变体基因的鉴定和功能解析[D]. 北京:中国科学院, 2015.(Shen M. Identification and functional analysis of the gene from soybean ethyleneresponse mutant[D]. Beijing: Chinese Academy of Sciences, 2015.)
[26]Delves A C, Mathews A, Day D A, et al. Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors[J]. Plant Physiology, 1986, 82(2): 588-590.[27]Reid D E, Ferguson B J, Hayashi S, et al. Molecular mechanisms controlling legume autoregulation of nodulation[J]. Annals of Botany, 2011, 108(5): 789-795.
[28]van Brussel A A N, Tak T, Boot K J M, et al. Autoregulation of root nodule formation: Signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp nigra[J] Molecular Plant-Microbe Interactions, 2002, 15(4): 341-349.
[29]Goodlass G, Smith K A. Effects of ethylene on root extension and nodulation of pea (Pisum sativum L) and white clover (Trifolium repens L)[J].Plant and Soil, 1979, 51: 387-395.
[30]Grobbelaar N, Clarke B, Hough M C. The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L III. The effect of carbon dioxide and ethylene[J]. Plant and Soil(Special Volume), 1971: 215-223.
[31]Caba J M, Poveda J L, Gresshoff P M, et al. Differential sensitivity of nodulation to ethylene in soybean cv Bragg and a supernodulating mutant[J]. New Phytologist, 1999, 142(2): 233- 242
[32]Caba J M, Recalde L, Ligero F.Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa[J].Plant Cell and Environment, 1998, 21(1): 87-93.
[33]Guinel F C, Larue T A.Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz)[J].Plant Physiology, 1992, 99(2): 515-518.
[34]Nukui N, Ezura H, Yuhashi K I, et al. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum[J].Plant and Cell Physiology, 2000, 41(7): 893-897.?
[35]Oldroyd G E D, Engstrom E M, Long S R. Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula[J].Plant Cell, 2001, 13(8): 1835-1849.
[36]Hunter W J.Ethylene production by root-nodules and effect of ethylene on nodulation in Glycine max[J]. Applied and Environmental Microbiology, 1993, 59(6): 1947-1950.[37]Suganuma N, Yamauchi H, Yamamoto K. Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium Japonicum[J].Plant Science, 1995, 111(2): 163-168.
[38]Xie Z P, Staehelin C, Wiemken A, et al. Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation[J].Journal of Plant Physiology, 1996, 149(6): 690-694
[39]Goormachtig S, Capoen W, James E K, et al.Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 6303-6308.
[40]Larrainzar E, Riely B K, Kim S C, et al.Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals[J]. Plant Physiology, 2015, 169(1): 233-265.
[41]Ma W B, Penrose D M, Glick B R.Strategies used by rhizobia to lower plant ethylene levels and increase nodulation[J]. Canadian Journal of Microbiology, 2002, 48(11): 947-954.
[42]Yuhashi K I, Ichikawa N, Ezura H, et al.Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum[J]. Applied and Environmental Microbiology, 2000, 66(6): 2658-2663.[43]Ma W B, Guinel F C, Glick B R.Rhizobium leguminosarum biovar viciae 1aminocyclo-propane1carboxylate deaminase promotes nodulation of pea plants[J]. Applied and Environmental Microbiology, 2003, 69(8): 4396-4402.
[44]Miyata K, Kawaguchi M, Nakagawa T. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus[J].Plant and Cell Physiology, 2013, 54(9): 1469-1477.
[45]Wopereis J, Pajuelo E, Dazzo F B, et al.Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype[J]. Plant Journal, 2000, 23(1): 97-114.
[46]Searle I R, Men A E, Laniya T S, et al. Long-distance signaling in nodulation directed by a CLAVATA1like receptor kinase[J] Science, 2003, 299(5603): 109-112
[47]Penmetsa R V, Frugoli J A, Smith L S, et al. Dual genetic pathways controlling nodule number in Medicago truncatula[J]. Plant Physiology, 2003, 131(3): 998-1008.
[48]Clark S E, Williams R W, Meyerowitz E M.The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis[J].Cell, 1997, 89(4): 575-585.
[49]Ferguson B J, Indrasumunar A, Hayashi S, et al.Molecular analysis of legume nodule development and autoregulation[J].Journal of Integrative Plant Biology, 2010, 52(1): 61-76.
[50]Hirsch A M. Developmental biology of legume nodulation[J] New Phytologist, 1992, 122(2): 211-237.
[51]Ferguson B J, Foo E, Ross J J, et al. Relationship between gibberellin, ethylene and nodulation in Pisum sativum[J] New Phytologist, 2011, 189(3): 829-842.
[52]Sun J H, Cardoza V, Mitchell D M, et al.Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation[J].Plant Journal, 2006, 46(6): 961-970.
[53]Asamizu E, Shimoda Y, Kouchi H, et al.A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus[J].Plant Physiology, 2008, 147(4): 2030-2040.
[54]Plet J, Wasson A, Ariel F, et al. MtCRE1dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula[J]. Plant Journal, 2011, 65(4): 622-633.

Memo

Memo:
-
Last Update: 2016-04-04