|Table of Contents|

The Digital Gene Expression Profiling Analysis of Genes in Response to Low Phosphorus Stress in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2016年02期
Page:
213-221
Research Field:
Publishing date:

Info

Title:
The Digital Gene Expression Profiling Analysis of Genes in Response to Low Phosphorus Stress in Soybean
Author(s):
YAO Min-lei1 ZHANG Jing-yao1 ZHOU Xi1 HAN Shao-huai1 XIE Feng-bin1 ZHU Yue-lin12 GAI Jun-yi1 YANG Shou-ping1
1.Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean(General), Ministry of Agriculture/State Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University, Nanjing 210095,China;
2.College of Horticulture,Nanjing Agricultural University,Nanjing 210095,China
Keywords:
SoybeanLow phosphorus stressDigital gene expression profilingDifferential expressed genes
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2016.02.0213
Abstract:
In this study,the T5?line of the soybean cultivar transferred with OsPT6 gene and its receptor parent Dongnong 50 under low phosphorus stress were used to analyze their root cDNA library by digital gene expression profiling technology.The results showed that a total of 33 differential expressed genes(DEGs)were screened.Compared with the receptor parent, 21 DEGs were upregulated and 12 DEGs were down-regulated in the OsPT6 transgenic soybean.GO enrichment analysis showed that 25 DEGs were enriched in the processes of biological macromolecules metabolism, secondary metabolism and enzyme activity regulation. The KEGG pathway analysis showed that only one peroxidase superfamily protein was involved in the pathways such as phenylpropanoid biosynthesis, phenylalanine metabolism and biosynthesis of secondary metabolites. Comprehensive analysis showed that the photosynthesis rate affected the secondary metabolic pathways by regulating activity of the enzymes involved in photosynthesis,which could be the main way of soybean adapted to low phosphorus stress.These results provided a base for further study on the molecular mechanism in response to low phosphorus stress and functional genes screening in soybean.

References:

[1]董薇,练云,余永亮,等.大豆磷胁迫响应研究进展[J].大豆科学,2012,31(1):135-140.(Dong W,Lian Y,Yu Y L,et al.Advances in low phosphorus stress on soybean[J].Soybean Science,2012,31(1):135-140.)

[2]Song H N,Yin Z T,Chao M N,et al.Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean[J].Plant Cell and Environment,2014,37(2):462-472.
[3]郭强,孙淑斌,徐国华.水稻中的磷转运蛋白基因在异源表达系统中的功能分析[J].中国水稻科学,2008,22(3):227-233.(Guo Q,Sun S B,Xu G H.Functional analysis of a phosphate transporter from rice in a heterologous expression system[J]. Chinese Journal of Rice Science,2008,22(3):227-233.)
[4]Yan W,Chen G H,Yang L F,et al.Overexpression of the rice phosphate transporter gene OsPT6 enhances tolerance to low phosphorus stress in vegetable soybean[J].Scientia Horticulturae,2014,177:71-76.
[5]Dyhrman S T,Jenkins B D,Rynearson T A,et al.The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response[J].PLoS One,2012,7(3):1643-1646.
[6]Wang L K,Feng Z X,Wang X,et al.DEGseq:An R package for identifying differentially expressed genes from RNA-seq data[J].Bioinformatics,2009,26(1):136-138.
[7]葛淑娟,孙爱清,刘鹏,等.玉米响应渗透胁迫的数字基因表达谱分析[J].作物学报,2014,40(7):1164-1173.(Ge S J,Sun A Q,Liu P,et al.In silico expression profile of maize genes in response to osmotic stress[J].Agronomica Sinica,2014,40(7):1164-1173.)
[8]Hao Q N,Zhou X A,Sha A H,et al.Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes[J].BMC Genomics,2011,12:525-540.
[9]Trapnell C,Pachter L,Steven L,et al.TopHat:Discovering splice junctions with RNA-seq[J].Bioinformatics,2009,25(9):1105-1111.
[10]Kanehisa M,Araki M,Goto S,et al.KEGG for linking genomes to life and the environment[J].Nucleic Acids Research,2007,36:480-484.
[11]孙爱清,张杰道,万勇善,等.花生干旱胁迫响应基因的数字表达谱分析[J].作物学报,2013,39(6):1045-1053.(Sun A Q,Zhang J D,Wan Y S,et al.In silico expression profile of genes in response to drought in peanut[J].Agronomica Sinica,2013,39(6):1045-1053.)
[12]杨晓杰,赵付安,唐中杰,等. 瑟伯氏棉TIR-NBS-LRR类蛋白质编码基因的克隆与分析[J].江苏农业学报,2013, 29(6):1228-1235.(Yang X J,Zhao F A,Tang Z J,et al.Cloning and analysis of genes encoding TIR-NBS-LRR-like proteins in Gossipium thurberi[J]. Jiangsu Journal of Agricultural Sciences,2013,29(6):1228-1235.)
[13]刘云飞,万红建,韦艳萍,等.番茄NBS-LRR抗病基因家族全基因组分析[J].核农学报,2014,28(5):790-799.(Liu Y F,Wan H J,Wei Y P,et al.Whole genome analysis of NBS-LRR resistance gene family in tomato[J].Journal of Nuclear Agricultural Sciences,2014,28(5):790-799.)
[14]Tarr D E K,Alexander H M.TIR-NBS-LRR genes are rare in monocots:Evidence from diverse monocot orders[J].BMC Research Notes,2009,2:197-207.
[15]郭晓双,吴冬婷,周全,等.缺磷胁迫对大豆植株磷素与干物质积累的影响[J].大豆科学,2014,33(4):545-549.(Guo X S,Wu D T,Zhou Q, et al.Effect of phosphorus deficiency stress on phosphorus and dry matter accumulation in soybean[J].Soybean Science,2014,33(4):545-549.)
[16]Lan P,Li W F,Schmidt W.Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation[J].Molecular and Cellular Proteomics,2012,11:1156-1166.
[17]肖翔,官春云,尹明智,等.基因芯片技术在农业中应用的研究进展[J].中国农学通报,2012,28(33):187-193.(Xiao X,Guan C Y,Yin M Z,et al.Research progress on application of gene chip in agriculture[J].Chinese Agricultural Science Bulletin,2012,28(33):187-193.)
[18]李杰,唐降龙,王亚东,等.基因表达谱聚类/分类技术研究及展望[J].生物工程学报,2005,21(4):667-673.(Li J,Tang J L,Wang Y D,et al.Research on gene expression data based on clustering classification technology[J].Chinese Journal of Biotechnology,2005,21(4):667-673.)
[19]Marioni J C,Mason C E,Mane S M,et al.RNA-seq:An assessment of technical reproducibility and comparison with gene expression arrays[J].Genome Research,2008,18:1509-1517.
[20]Mortazavi A,Williams B A,McCue K,et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods,2008,5:621-628.
[21]王琪,徐程扬.氮磷对植物光合作用及碳分配的影响[J].山东林业科技,2005,160(5):59-62.(Wang Q,Xu C Y.Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning[J].Journal of Shandong Forestry Science and Technology,2005,160(5):59-62.)
[22]Hope A B,Valente P,Matthews D B.Effects of pH on the kinetics of redox reactions in and around the cytochrome bf complex in an isolated system[J].Photosynthesis Research,1994,42(2):111-120.
[23]Peng L,Wei W,Ouyang S Q,et al.Analysis of expressed receptor-like kinases (RLKs) in soybean[J].Journal of Genetics and Genomics,2009,36(10):611-619.
[24]彭春雪.干旱胁迫下甜菜生理及蛋白质组差异分析[D].哈尔滨:黑龙江大学,2013.(Peng C X.Analysis of physiological and proteome differences in sugar beet under drought stress[D].Harbin:Heilongjiang University,2013.)
[25]刘镕,赵琴平,董惠芬,等.TGF-β信号传导通路及其生物学功能[J].中国病原生物学杂志,2014,9(1):77-83.(Liu R,Zhao Q P,Dong H F,et al.The TGF-β signaling pathways and their biological functions[J].Journal of Pathogen Biology,2014,9(1):77-83.)
[26]杨郁文,倪万潮,张保龙,等.陆地棉一个丝氨酸/苏氨酸激酶蛋白基因的克隆与表达分析[J].棉花学报,2006,18(3):140-144.(Yang Y W,Ni W C,Zhang B L,et al.Molecular cloning and expression analysis of a Serine/Threonine protein kinase gene in upland cotton[J].Cotton Science,2006,18(3):140-144.)
[27]王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展[J].武汉植物学研究,2007,25(5):500-508.(Wang L,Shi L L,Zhang Y X,et al.Biosynthesis and regulation of the secondary metabolites in plants[J].Journal of Wuhan Botanical Research,2007,25(5):500-508.)
[28]Hans V L,Jordi G M,María C,et al.Analysis of the melon genome in regions encompassing TIR-NBS-LRR resistance genes[J].Molecular Genetics and Genomics,2005,273(3):240-251.
[29]张祥喜,罗林广.植物抗病基因研究进展[J].分子植物育种,2003,1(4):531-537.(Zhang X X,Luo L G. Progress of plant disease resistance gene[J].Molecular Plant Breeding,2003,1(4):531-537.)

Memo

Memo:
-
Last Update: 2016-04-04