|Table of Contents|

Advance of Soybean Molecular Markers in 2014(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2015年06期
Page:
1066-1074
Research Field:
Publishing date:

Info

Title:
Advance of Soybean Molecular Markers in 2014
Author(s):
WANG Yan LI Wen-bin
Agronomy College of Northeast Agricultural University/ Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Soybean Biology and Breeding/ Genetics of Chinese Agriculture Ministry, Harbin 150030, China
Keywords:
Soybean Molecular Markers Breeding for disease resistance QTL Fine mapping
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2015.05.1066
Abstract:
With the development and application of functional genomics and high-throughput sequencing technology, biological breeding has been paid more focus and widely used in soybean breeding approaches.Especially, molecular markers and QTL studies tend to exploit new high-throughput and functional markers, QTL fine mapping and application of new analytical methods, shortening the soybean breeding period, improving the selection efficiency, and speeding up the soybean breeding progress. Therefore, the objective of this study is to review the technological development and its application of molecular markers in 2014 and make a brief forecast about the developmental trend in future.

References:

[1]Qi X P, Li M W, Xie M, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing[J]. Nature Communications, 2014, 5: 4340

[2]Li Y H, Zhou G Y, Ma J X, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nature Biotechnology, 2014, 32: 1045-1052
[3]Won-HYong C, Amhee J N, JIwoong K, et al. Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes[J].DNA Research, 2014, 21: 153-167.
[4]Goettel W, Xia E, Upchurch R, et al. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content[J]. BMC Genomics, 2014, 15: 299
[5]Eun-Young H, Song Q J, Jia G F, et al.A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genomics, 2014 15: 1.
[6]Liu D, Ma C, Hong W, et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLOS ONE, 2014, 9(6): e98855
[7]Qi Z, Huang L, Zhu R, et al. A high-density genetic map for soybean based on specific length amplified fragment sequencing[J]. PLOS ONE, 2014, 9(8): e104871
[8]Hu Z B, Zhang D, Zhang G Z, et al. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb and Zucc)[J]. Breeding Science, 2014, 63: 441-449
[9]Zhang W J, Niu Y, Bu S H, et al.Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage[J]. PLOS ONE, 2014, 9(1): e84750
[10]Sun J T, Li L H, Zhao J M, et al.Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L) Merr][J].Theoretical and Applied Genetics, 2014, 127: 913-919.
[11]Sun J, Guo N, Lei J, et al.Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L) Merr)[J]. Journal of Genetics, 2014, 93(2): 355-363.
[12]Lee S, Rouf M A, Sneller C H, et al. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions[J]. Theoretical and Applied Genet,ics 2014, 127: 429-444.
[13]Jiao Y, Vuong T D, Liu Y, et al.Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655[J]Theoretical and Applied Genetics, 2014, 128: 15-23.
[14]Wen Z X, Tan R J, Yuan J Z, et al.Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean[J]. BMC Genomics, 2014, 15: 809
[15]Kim H, Xing G N, Wang Y F, et al. Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations[J]. Euphytica, 2014, 196: 137-154
[16]Kim K S, Chirumamilla A, Hill C B, et al. Identification and molecular mapping of two soybean aphid resistance genes in soybean PI 587732[J]. Theoretical and Applied Genetics, 2014, 127: 1251-1259.
[17]Kato S, Sayama T, Fujii K, et al. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds[J]. Theoretical and Applied Genetics, 2014, 127: 1365-1374.
[18]Che J Y, Ding J J, Liu C Y, et al. Quantative trait loci of seed traits for soybean in multiple environments[J]. Genetics and Molecular Research, 2014, 13 (2): 4000-4012.
[19]Xie F T, Niu Y, Zhang J, et al. Fine mapping of quantitative trait loci for seed size traits in soybean[J]. Molecular Breeding, 2014, 34: 2165-2178.
[20]Yan L, Li Y H, Yang C Y, et al. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max×Glycine soja[J]. Plant Breeding, 2014, 133(5): 632-637
[21]Wang W B, He Q Y, Yang H Y, et al. Identification of QTL/segments related to seed-quality traits in G.soja using chromosome segment substitution lines[J]. Plant Genetic Resources: Characterization and Utilization, 2014, 12(S1): 65-S69.[22]He Q Y, Yang H Y, Xiang S H, et al.QTL mapping for the number of branchesand pods using wild chromosome segment substitution lines in soybean [Glycine max(L) Merr][J]. Plant Genetic Resources: Characterization and Utilization, 2014, 12(S1): 172-S177
[23]Hwang Sadal, Ray Jeffery D, Cregan Perry B, et al.Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L[Merr])[J].Euphytica, 2014, 195: 419-434
[24]Dong Y, Yang X, Liu J, et al. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean[J]. Nature Communications, 2014, 5: 3352
[25]Yan L, Xing L L, Yang C Y, et al. Identification of quantitative trait loci associated with soybean seed protein content using two populations derived from crosses between Glycine max and Glycine soja[J].Plant Genetic Resources: Characterization and Utilization, 2014, 12(S1); 104-S108
[26]Qi Z M, Hou M, Han X, et al.Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environment[J]. Plant Breeding, 2014, 133: 499-507
[27]Akond Masum, Liu S M, Boney Melanie, et al. Identification of Quantitative Trait Loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean[J].American Journal of Plant Sciences, 2014, 5: 158-167.
[28]Zhang D, Kan G Z, Hu Z B, et al. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics, 2014, 127: 1905-1915
[29]Wang J, Liu L, Guo Y, et al. Dominant locus, Qbsc-1, controls beta subunit content of seed storage protein in soybean (Glycine max (L) Merri)[J]. Journal of Integrative Agriculture, 2014, 13(9): 1854-1864
[30]Wang X Z, Jiang G L, Song Q J, et al.Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean [J]. Euphytica, 2014, 201: 293-305.
[31]Ramamurthy R K, Jedlicka J, Graef G L, et al.Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L) Merr][J].Mol Breeding, 2014, 34: 431-445
[32]Qi Z M, Han X, Hou M, et al. QTL analysis of soybean oil content under 17 environments[J] Canadian Journal of Plant Science, 2014, 94: 245-261.
[33]Wang X Z, Jiang G L, Green Marci, et al. Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean[J].Mol Breeding, 2014, 33: 281-296
[34]Ha B K, Kim H J, Velusamy V, et al. Identification of quantitative trait loci controlling linolenic acid concentration in PI483463 (Glycine soja)[J]. Theoretialc and Applied Genetics, 2014, 127: 1501-1512
[35]Cardinal A J, Whetten R, Wang S, et al. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations[J]. Theoretialc and Applied Genetics, 2014, 127: 97-111
[36]Akond Masum, Liu S M, Kantartzi Stella K, et al. Quantitative trait loci for seed isoflavone contents in ‘MD96-5722’ by ‘Spencer’ recombinant inbred lines of soybean[J].Journal of Agricultural and Food Chemistry, 2014, 62: 1464-1468
[37]Zhang H J, Li J W, Liu Y J, et al. Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds[J]. Journal of Genetics, 2014, 93(2): 331-338
[38]Wang Y, Han Y P, Teng W L, et al. Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L Merr) seed. BMC Genomics 2014, 15: 680
[39]Smallwood C J, Nyinyi C N, Kopsell D A, et al. Detection and confirmation of quantitative trait loci for soybean seed isoflavones[J].Crop Science, 2014, 54: 595-606
[40]Zeng A, Chen P, Shi A, et al. Identification of quantitative trait loci for sucrose content in soybean seed[J]. Crop Science, 2014, 54(2): 554-564
[41]Mamidi S, Lee R K, Goos J R, et al. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max)[J]. PIOS ONE, 2014, 9(9): e107469
[42]Zhang D, Song H, Cheng H, et al. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress[J]. PLOS Genet, 2014, 10(1): e1004061.
[43]Abdel-Haleem H, Carter J T E, Rufty T W, et al. Quantitative trait loci controlling aluminum tolerance in soybean: Candidate gene and single nucleotide polymorphism marker discovery[J] Molecular Breeding, 2014, 33: 851-862
[44]Yang W M, Wang M, Yue A Q, et al. QTLs and epistasis for drought-tolerant physiological index in soybean (Glycine max L) across different environments[J]. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics, 2014, 67(1): 72-78
[45]Kebede H, Smith J R, Ray J D.Identification of a single gene for seed coat impermeability in soybean PI 594619[J]. Theoretical and Applied Genetics, 2014, 127: 1991-2003
[46]Shim H C, Ha B K, Yoo M, et al. Detection of quantitative trait loci controlling UV-B resistance in soybean[J].Euphytica, 2014, 202: 109-118
[47]Langewisch T, Zhang H, Vincent R, et al. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes[J].PLOS ONE, 2014, 9(4): e94150
[48]Wang Y, Cheng L R, Leng Ji T, et al. Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean (Glycine max (L) Merr)[J].Euphytica, 2014, 201: 275-284.
[49]Liang H Z, Yu Y J, Yang H Q, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theoretical and Applied Genetics, 2014, 127(10): 2127-2137
[50]Bolon Y T, Hyten D L, Orf J H, et al.eQTL networks reveal complex genetic architecture in the immature soybean seed[J].The Plant Genome 7, 2014, 7(1): 1-14.
[51]Ping J Q, Liu Y F, Sun L J, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean[J].The Plant Cell, 2014, 26(7): 2831-42
[52]曲忠诚.SSR分子标记在大豆原原种提纯中的应用[J]. 安徽农业科学,2014,42(26): 8887-8889.(Qu Z C. Application of SSR markers in soybean original seed purification[J] Journal of Anhui Agricultural Sciences, 2014, 42(26): 8887-8889.)
[53]任海红,刘学义,朱保葛,等.大豆百粒重相关分子标记的实用性分析与验证[J].分子植物育种,2014,12(1):69-73.(Ren H H, Liu X Yi, Zhu B G, et al. Practical analysis & verification of molecular marker of weight of 100-seed in soybean[J].Molecular Plant Breeding, 2014, 12(1): 69-73.)
[54]杨凯敏,李贵全,郭数进,等.大豆自然群体 SSR标记遗传多样性及其与农艺性状的关联分析[J]. 核农学报,2014,28(9):1576-1584.(Yang K M, Li G Q, Guo S J, et al. Genetic diversity and association analysis of SSR markers and agronomic traits in natural populations of soybean[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1576-1584.)
[55]张春宝,邱红梅,赵洪锟,等.东北地区大豆种质遗传多样性的SRAP标记分析[J] 大豆科学,2014,33(1):17-22.(Zhang C B, Qiu H M, Zhao H K, et al. Genetic diversity analysis of soybean germplasm in northeast region of China by SRAP markers[J]. Soybean Science, 2014, 33(1): 17-22.)
[56]李海燕,韩英鹏,武小霞,等. 大豆维生素 E 遗传图谱构建及QTL分析[J]. 大豆科学,2014,33(4):492-496.(Li H Y,Han Y P,Wu X X, et al.QTL analysis of soybean vitamin E and genetic map construction[J]. Soybean Science, 2014, 33(4): 492-496.)
[57]邹筱,韩粉霞,陈明阳,等.大豆脂肪酸主要组分含量QTL定位[J]. 作物学报,2014,40(9):1595-1603.(Zou X, Han F X, Chen M Y, et al. Quantitative trait loci of major fatty acid components in soybean[J]. Acta Agronomica Sinica, 2014, 40(9): 1595-1603.)
[58]马岩松,刘鑫磊,栾晓燕,等.大豆胞囊线虫病抗性基因相关分子标记对杂交后代抗性的鉴定效率[J].大豆科学,2014,33(2):173-178.(Ma Y S, Liu X L, Luan X Y, et al.Identification efficiency about resistance to Soybean Cyst Nematode with relative molecular markers in hybrid progeny[J].Soybean Science, 2014, 33(2): 173-178.)
[59]安咏梅,王家军,李进荣,等. 大豆抗胞囊线虫的分子标记研究[J]. 黑龙江农业科学,2014(7):15-17.(An Y M, Wang J J, Li J R, et al. Molecular markers with soybean cyst nematode resistance[J]. Heilongjiang Agricultural Sciences, 2014(7): 15-17.)
[60]袁翠平,赵洪锟,王玉民,等. 利用 SSR标记评价抗胞囊线虫野生大豆种质的遗传多样性[J]. 大豆科学,2014,33(2):147-153.(Yuan C P, Zhao H K, Wang Y M, et al.Genetic diversity of wild soybean (Glycine soja) resistant germplasms to soybean Cyst Nematode revealed by SSR markers[J]. Soybean Science, 2014, 33(2): 147-153.)
[61]韩英鹏,赵雪,李修平,等. 大豆种质对花叶病毒病和疫霉根腐病抗病性的SSR标记辅助鉴定[J].大豆科学,2014,33(1):27-30.(Han Y P, Zhao X, Li X P, et al.SSR identification of soybean cultivar with resistance to Soybean Mosaic Virus and Phytophthpra Root Rot[J].Soybean Science, 2014, 33(1):27-30.)
[62]洪雪娟,黄婧,丁卉,等.大豆异地衍生重组自交系群体产量相关性状的QTL定位[J].中国油料作物学报,2014,36(5):572-579.(Hong X J,Huang J, Ding H, et al. Detection of soybean QTLs on yield-related traits in RIL populations derived from Peking ×7605 in two sites[J].Chinese Journal of Oil Crop Sciences, 2014, 36(5): 572-579.)
[63]姚丹,王丕武,张君,等.大豆主要产量性状QTL定位分析[J].华南农业大学学报,2014,35(3):41-46.(Yao D, Wang P W, Zhang J, et al. A QTL mapping analysis of main yield traits in soybean[J]. Journal of South China Agricultural University, 2014, 35(3): 41-46.)
[64]陈庆山,蒋洪蔚,孙殿君,等. 利用野生大豆染色体片段代换系定位百粒重QTL[J].大豆科学,2014,33(2):154-160.(Chen Q S, Jiang H W, Sun D J, et al. QTL mapping for 100-seed weight using wild soybean chromosome segment substitution lines[J]. Soybean Science, 2014, 33(2): 154-160.)
[65]杨胜先,牛远,李梦,等.栽培大豆农艺性状的关联分析及优异等位变异挖掘[J].中国农业科学,2014,47(20):3941-3952.(Yang S X, Niu Y, Li M, et al. Association mapping of agronomic traits in soybean (Glycine max L Merr) and mining of novel alleles[J]. Scientia Agricultura Sinica, 2014, 47(20): 3941-3952.)
[66]陈强,闫龙,杨春燕,等. 冀豆12遗传背景下3个回交组合高低蛋白含量后代品系SSR标记分析[J].中国农业科学,2014,47(2):230-239.(Cheng Q, Yan L, Yang C Y, et al. SSR markers linked to high and low protein content strains derived from 3 backcross combinations under Jidou 12 genetic background[J].Scientia Agricultura Sinica, 2014, 47(2): 230-239.)
[67]马占洲,孙殿君,蒋洪蔚,等.野生大豆回交导入系蛋白质含量性状的QTL分析[J].中国油料作物学报,2014,36(3):316-322.(Ma Z Z, Sun D J, Jiang H W, et al. Genotyping and QTL mapping of protein content with wild soybean backcross introgressive lines[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(3): 316-322.)
[68]王琳琳,刘春燕,姜振峰,等. 多环境条件下大豆蛋白质含量稳定性QTL分析[J].中国油料作物学报,2014,36(4):443-449.(Wang L L, Liu C Y, Jiang Z F, et al. Analysis of QTL underlying protein content of soybean in multi-environments[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(4): 443-449.)
[69]邱红梅,郝文媛,高淑芹,等.大豆含硫氨基酸相关酶基因发掘[J].遗传,2014,遗传,2014,36(9):934-942.(Qiu H M, Hao W Y, Gao S Q, Gene mining of sulfur-containing amino acid metabolic enzymes in soybean[J]. Hereditas, 2014, 36(9): 934-942)
[70]侯萌,齐照明,韩雪,等.大豆蛋白质和油分含量QTL定位及互作分析[J]. 中国农业科学,2014,47(13):2680-2689.(Hou M, Qi Z M, Han X, et al. QTL mapping and interaction analysis of seed protein content and oil content in soybean[J]. Scientia Agricultura Sinica, 2014, 47(13): 2680-2689.)
[71]沈岩茹,刘春燕,姜振峰,等. 大豆油分含量稳定性QTL定位[J]. 分子植物育种,2014,12(2):254-261.(Shen Y R, Liu C Y, Jiang Z F, et al. QTL analysis of stability for oil content in soybean[J]. Molecular Plant Breeding, 2014, 12(2): 254-261.)
[72]苗兴芬,李灿东,郑殿峰,等. 大豆油酸含量相关QTL间的上位效应和QE互作效应[J].大豆科学,2014,33(1):23-30.(Miao X F, Li C D, Zheng D F, et al. Epistatic effects of QTLs and QE interaction effects on oleic acid content in soybean [J].Soybean Science, 2014, 33(1):23-30.)
-[73]齐照明,侯萌,韩雪,等.东北地区大豆主栽品种油分蛋白含量的关联分析[J]. 中国油料作物学报,2014,36(2):168-174.(Qi Z M, Hou M, Han X, et al.Association analysis of soybean oil and protein content for northeast soybean cultivar in China[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 168-174.)
[74]梁慧珍,余永亮,杨红旗,等. 幼苗期大豆根系性状的遗传分析与QTL检测[J]. 中国农业科学,2014,47(9):1681-1691.(Liang H Z, Xu Y L, Yang H Q, et al. Genetic and QTL analysis of root traits at seedling stage in soybean [Glycine max(L) Merr] [J].Scientia Agricultura Sinica, 2014, 47(9): 1681-1691.)
[75]王欢,孙霞,岳岩磊,等. 东北春大豆花荚脱落性状与SSR标记的关联分析[J]. 土壤与作物 2014,3(1):32-40.(Wang H, Sun X, Yue Y L, et al.Association mapping of flower and pod abscission with SSR markers in northeast spring sowing soybeans[J]. Soil and Crop, 2014, 3(1): 32-40.)

Memo

Memo:
-
Last Update: 2016-01-07