|Table of Contents|

QTL Mapping for Vining Growth Habit of a Wild Soybean Accession PI342618B(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2015年06期
Page:
933-937
Research Field:
Publishing date:

Info

Title:
QTL Mapping for Vining Growth Habit of a Wild Soybean Accession PI342618B
Author(s):
LIU Li XING Guang-nan LI Xu-liang XU Zhi-yong KONG Jie-jie GAI Jun-yi ZHAO Tuan-jie
Soybean Research Institute, Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
Keywords:
Glycine soja Vining growth habit QTL mapping Composite interval mapping
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2015.06.0933
Abstract:
Vining growth habit is the basic characteristics of annual wild soybean. In the present study, 286 lines of a recombinant inbred line population (NJRINP) derived from the cross between Nannong 86-4 and PI342618B were used to conduct field experiments.Vining growth habit was investigated at beginning flowering (R1) and full maturity stage (R8) in 2013 and 2014, respectively. The composite interval mapping (CIM) of the software WinQTLCart 2.5 was used to map QTL with a genetic linkage map of 226 markers. The linkage group D1a(Chromosome 1), G(Chr-18) and L(Chr-19) were found to be related with vining growth habit at R1 stage. The QTL -qVGH-D1a, qVGH-G-1 and qVGH-G-2 was detected during the two years, the QTL qVGH-G-2, which accounted for 14.16% and 14.18% of phenotypic variation, was the major QTL controlling vining growth habit at R1 stage.Two loci qVGH-G-1 and qVGH-L were found for vining growth habit at R8 stage.The qVGH-G-1 on linkage group G had similar contribution of phenotypic variation at both R1 and R8 stages, indicating that the locus was a stable one at whole growth period.The qVGH-L on Linkage group L accounted for 39.11% and 23.14% of phenotypic variation in two years respectively, was considered to be a mojor QTL controlling vining growth habit at R8 stage. It might be related to determinate habit gene Dt1according to its physical position on the chromosome.All positive alleles of vining growth habit are from PI342618B.However, the genetic system of vining growth habit at R1 stage is different from that at R8 stage

References:

[1]Andargie M, Pasquet R S, Gowda B S, et al.Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V.unguiculata (L) Walp.) [J]. Molecular Breeding, 2011, 28(3): 413-420

[2]盖钧镒, Walter R F, Reid G P.大豆栽培种和野生种回交计划的四个世代中一些农艺性状的遗传表现 [J].遗传学报, 1982, 9(1): 44-56. (Gai J Y, Walter R F, Reid G P.Genetic performance of some agronomic characters in four generations of a backcrossing program involving Glycine max and Glycine soja [J].Journal of Genetics and Genomics, 1982, 9(1): 44-56)
[3]Liu B H, Fujita T, Yan Z H, et al. QTL mapping of domestication-related traits in soybean (Glycine max) [J].Annals of Botany, 2007, 100: 1027-1038
[4]张国栋, 王金陵, 孟庆喜. 大豆种子泥膜, 蔓生性和种皮色的遗传及其与蛋白质含量的关系 [J].大豆科学, 1989, 8(4): 315-321.(Zhang G D, Wang J L, Meng Q X.The inheritance of vining growth habit, seed coat color and bloom on seed coat and their relationship with seed protein contents in soybeans [J].Soybean Science, 1989, 8(4): 315-321.)
[5]王金陵, 孟庆喜, 杨庆凯, 等. 回交对克服栽培大豆与野生和半野生大豆杂交后代蔓生倒伏性的效应 [J].大豆科学, 1986, 5(3): 181-187 (Wang J L, Meng Q X, Yang Q K, et al.Effect of backcrossing on overcoming viny and lodging habit of cultivated × wild and cultivated × semi-wild crosses [J]. Soybean Science, 1986, 5(3): 181-187)
[6]杨光宇, 郑惠玉, 韩春凤, 等.克服大豆种间杂种蔓生, 小粒等不良性状技术的初步研究 [J]. 大豆科学, 1993, 12(4): 275-282. (Yang G Y, Zhen H Y, Han C F, et al.A preliminary study on overcoming viny and small size seed habit of soybean interspecific hybrids [J].Soybean Science, 1993, 12(4): 275-282.)
[7]杨光宇, 王洋, 马晓萍, 等.野生大豆种质资源评价与利用研究进展 [J].吉林农业科学, 2005, 30(2): 61-63. (Yang G Y, Wang Y, Ma X P, et al. Research advances in the evaluation and utilization of soybean (Glycine soja) [J].Journal of Jilin Agricultural Sciences, 2005, 30(2): 61-63)
[8]彭玉华, 梅德圣, 杨国保, 等. 栽培大豆中的双隐性蔓生倒伏现象 [J].大豆科学, 1999, 18(1): 6-9.(Peng Y H, Mei D S, Yang G B, et al. Double recessive loci controlled viny and lodging habit in cultivated soybean [J]. Soybean Science, 1999, 18(1): 6-9.)
[9]刘卫国, 蒋涛, 佘跃辉, 等.大豆苗期茎秆对荫蔽胁迫响应的生理机制初探 [J] 中国油料作物学报, 2011, 33(2): 141-146.(Liu W G, Jiang T, She Y H, et al. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage [J]. Chinese Journal of Oil Crop Science, 2011, 33(2): 141-146.)
[10]Liu W, Zou J, Zhang J, et al. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system [J]. Plant Production Science, 2015, 18(1): 69-75
[11]邱丽娟, 常汝镇.大豆种质资源描述规范和数据标准 [M].北京: 中国农业出版社, 2006.(Qiu L J, Chang R Z.Descriptors and data standard for soybean (Glycine spp) [M] Beijing: China Agriculture Press, 2006.)
[12]王克晶, 李向华.中国野生大豆 (Glycine soja) 遗传资源主要形态, 遗传变异和结构 [J]. 植物遗传资源学报, 2012, 13(6): 917-928. (Wang K J, Li X H. Morphological types, genetic variation and structure in Chinese wild soybean (Glycine soja) genetic resources [J]. Journal of Plant Genetic Resources, 2012, 13(6): 917-928.)
[13]栗旭亮. 栽培×野生大豆重组自交系群体NJRINP遗传图谱构建及驯化相关性状QTL定位研究 [D]. 南京:南京农业大学, 2012 (Li X L.Genetic map construction and QTL mapping of domestication-related traits in a RIL population (NJRINP) of cultivated×wild soybean [D]. Nanjing:Nanjing Agricultural University, 2012)
[14]Wang Y F, Lu J J, Chen S Y, et al.Exploration of presence/absence variation and corresponding polymorphic markers in soybean genome [J]. Journal of Integrative Plant Biology, 2014, 56(10): 1009-1019.
[15]姜树坤, 张凤鸣, 白良明, 等. 水稻移栽后新生根系相关性状的QTL分析 [J]. 中国水稻科学, 2014, 28(6): 598-604.(Jiang S K, Zhang F M, Bai L M, et al. QTL analysis on new root traits after rice transplanting [J]. Chinese Journal of Rice Science, 2014, 28(6): 598-604)
[16]邢光南, 周斌, 赵团结, 等.大豆抗筛豆龟蝽 .Megacota cribraria (Fabricius) 的QTL分析 [J]. 作物学报, 2008, 34(3): 361-368. (Xing G N, Zhou B, Zhao T J, et al. Mapping QTLs of resistance to Megacota cribraria(Fabricius) in soybean [J]. Acta Agronomica Sinica, 2008, 34(3): 361-368.)
[17]Tatiana D C, Paula R O, Danilo A S, et al.Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L) [J] Molecular Breeding, 2011, 27: 549-560
[18]Lee S H, Bailey M A, Mian M A R, et al.Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit [J]. Theoretical and Applied Genetics, 1996, 92(5): 516-523
[19]Liu B H, Watanabe S, Uchiyama T, et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1[J] Plant Physiology, 2010, 153:198-210
[20]Vu D T, Baek K H, Tuan N L, et al. Characterizing morphological traits and estimating genetic relationship for intermediate soybean collected from South Korea [J]. Plant Breeding, 2013, 132(3): 324-329
[21]Li Y H, Reif J C, Jackson S A, et al.Detecting SNPs underlying domestication-related traits in soybean [J]. BMC Plant Biology, 2014, 14(1): 251
[22]Ma Y S, Wang W H, Wang L X, et al. Genetic diversity of soybean and the establishment of a core collection focused on resistance to soybean cyst nematode [J]. Journal of Integrative Plant Biology, 2006, 48(6): 722-731.

Memo

Memo:
-
Last Update: 2015-12-30