|Table of Contents|

Study on Optimization of Soybean Cotyledonary Node Genetic Transformation System and the Transformation of Resistance Gene AtNHX5(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2015年02期
Page:
205-211
Research Field:
Publishing date:

Info

Title:
Study on Optimization of Soybean Cotyledonary Node Genetic Transformation System and the Transformation of Resistance Gene AtNHX5
Author(s):
YANG Quan1WANG Yueyue1 LIU Yan-guang1 JIANG Chun-zhi2 ZHANG Meng-chen2 ZHANG Hong-xia3 ZHANG Jie1WANG Dong-mei1
1.College of Life Science, Agricultural University of Hebei, Baoding 071001,China;?
2. Grain and Oil Crop Research Institute, Academy of Agriculture and Forestry of Hebei Province, Shijiazhuang 050000, China;?
3. Shanghai Institute of Plant Physiology, Chinese Academy of Sciences, Shanghai 200032, China
Keywords:
Soybean Cotyledonary node AtNHX5 Genetic transformation Glufosinate
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2015.02.0205
Abstract:
In this study,soybean cotyledonary node of Jidou 15, Wuxing 2 and NF-58 were used as materials. An efficient Agrobacterium-mediated gene transformation system based on the examinations of several factors influencing transformation efficiency was developed for soybean. The results indicated that the optimum transformation conditions were as follow: seeds germinated 6 days, 4℃ low temperature treatment, 20 mg?L-1?anti-oxidant silver nitrate during co-cultivation, ultrasonic treatment for infected explants 30 s. In the above condition, PCR-positive rate was 0.97% Using the optimized system an stress-resistant gene AtNHX5 was transformed Using the optimized system, the gene was transformed into soybean Wuxing 2. After detected the transgenic plants resistant to glufosinate by PCR, the transformation efficiency was 0.23% The expression of AtNHX5 was assessed by RT-PCR analysis.One positive plant of T1?generation was obtained by detection of PCR, which has salt-tolerance. It preliminarily demonstrated that the target gene was integrated into the soybean genome.

References:

[1]Stacey G, Vodkin L, Parrott W A, et al.National science foundation-sponsored workshop report.Draft plan for soybean genomics[J] Plant Physiology, 2004, 135 (1) : 59-70

[2]Cho. H J, Widholm J M.Agrobacterium tumefaciens-mediated transformation of the legume Astragalus sinicus using kanamycin resistance selection and green fluorescent protein expression[J] Plant Cell, Tissue and Organ Culture, 2002, 69 (3) : 251-258
[3]Meurer C A, Dinkins R D, Collins G B. Factors affecting soybean cotyledonary node transformation[J] Plant Cell Reports, 1998, 18: 180-186
[4]Trick H N, Finer J J. Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max[L]Merrill) embryogenic suspension culture tissue[J] Plant Cell Report, 1998, 17 : 482-488
[5]李海燕, 刘淼, 武小霞, 等.大豆转化过程中的褐化现象研究[J] 作物杂志, 2010(1): 33-35(Li H Y, Liu M, Wu X X, et al. Study on the browning during soybean transformation[J]Crops, 2010(1):33-35
[6]Blumwald E. Sodium transport and salt tolerance in plants[J]Current Opinion in Cell Biology, 2000, 12 (4) : 431-434
[7]Li T X, Zhang Y, Zhang H X, et al.Stable expression of Arabidopsis vacuolar Na+/H+?antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations[J]Chinese Science Bulletin, 2010, 55 (12): 1127-1134
[8]Trieu A T, Burleigh S H.Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium[J] The Plant Journal, 2000, 22 (6): 531-541.
[9]Liu H, Wang Q, Yu M, et al.Transgenic salt-tolerant sugar beet constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+?antiporter gene, AtNHX3, accumulates moresoluble sugar but less salt in storage roots[J] Plant Cell Environment, 2008, 31 (9) : 1325-1334
[10]Li M, Li Y, Li H Q, et al.Over expression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera(L)Vent[J] Tree Physiology, 2011, 31(3): 349-357
[11]Shuji Y, Francisco J, Beatriz C, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+?antiporters in the salt stress response[J] The Plant Journal, 2002, 30 (5) : 529-539
[12]Olhoft P M, Flagel L E, Donovan C M.Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method[J] Planta, 2003, 216: 723-735
[13]Tang W, Ross W, Ron S.Advances on genetic transforrmation in conifers[J]Developmental and Reproductive Biology, 2001, 10: 77-85
[14]Devi M K, Sakthivela G, Giridhar P. Protocol for augmented shoot organogenesis in selected variety of soybean (Glycine max[L] Merr)[J] Journal of Experimental Biology, 2012, 50(10):729-734
[15]Jefferson R A.Assaying chimeric in genes in plants : the GUS gene fusion system[J]Plant Molecular Biology, 1987, 5(4) : 387-405.
[16]于娅, 刘莉莎, 赵永钦, 等.影响花椰菜农杆菌介导转化因素的研究[J]植物遗传资源学报, 2010, 11(3) : 320-325(Yu Y, Liu L S, Zhao Y Q, et al.A study on the factors affecting the Agrobacterium-mediated transformation of cauliflower(Brassica oleracea var-botrytis) [J]Journal of Plant Genetic Resources, 2010, 11(3):320-325.
[17]李丹丹,张洁, 刘娜,等.农杆菌介导的大豆子叶节非组织培养遗传转化体系优化[J]植物遗传资源学报, 2012, 13, (5): 789-797(Li D D, Zhang J, Liu N, et al.Optimization of the Agrobacterium-mediated genetic transformation system of soybean cotyledonary node with non tissue-culture[J]Journal of Plant Genetic Resources, 2012, 13(5):789-797
[18]王关林, 方宏筠.植物基因工程[M]北京: 科学出版社, 2002 : 744(Wang G L, Fang H J. Plant gene engineering[M]Beijing: Science Press, 2002:744.
[19]Santarém E R, Trick H N, Finer J J. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: Optimization of transient expression[J] Plant Cell Report, 1998, 17: 752-759
[20]Trick H N, Finer J J.SAAT:Sonication-assisted Agrobacterium-mediated transformation[J]Transgenic Research, 1997, 6(5):329-336
[21]Hussain S S, Hussain T.Sonication-assisted Agrobacterium-mediated transformation (SAAT):An alternative method for cotton transformation[J]Pakistan Journal of Botany, 2007, 39(1): 223-230
[22]Febres V J, Costa M G. High-efficiency Agrobacterium-mediated transformation of citrus –via-sonication and vacuum infiltration[J]Plant Cell Report, 2009, 28 (3): 387-395.
[23]Flores Solís J I, Mlejnek P, Studená K S.Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L[J] Plant Soil Environment, 2003,49 (6): 255-260
[24]Joersbo M, Brunstedt J.Sonication: A new method for gene transfer to plants[J]Physiologia Plantarum, 1992, 85: 230-234
[25]刘莉莉, 刘丹, 丛郁, 等. 超声波辅助对农杆菌介导新红星苹果遗传转化GUS基因瞬间表达的影响[J]江苏农业学报, 2008, 24 (2): 213-215(Liu L L, Liu D, Cong Y, et al.Effects of sonication assisted Agrobacterium-mediated transformation instantaneous expression of GUS gene in Xinhongxing apple during genetic transformation[J]Jiangsu Journal of Agricultural Sciences, 2008, 24(2):213-215
[26]王昌陵, 赵军, 李英慧, 等. 转录因子ABP9转化大豆[Glycine max(L) Merrill]及遗传转化条件优化[J]中国农业科学, 2008, 41 (7): 1908-1916(Wang C L, Zhao J, Li Y H, et al.Transforming transcription factor ABP9 into soybean[Glycine max(L) Merrill] and optimization of the transformation system[J] Scientia Agricultura Sinica, 2008, 41(7):1908-1916.
[27]刘金华, 王丕武, 吴丽敏,等.脯氨酸、硝酸银对农杆菌转化大豆的影响[J]大豆科学, 2003, 22 (1): 36-39(Liu J H, Wang P W, Wu L M, et al.Effection of proline and AgNO3?on Agrobacterium-mediated transformation of soybean[J]Soybean Science, 2003, 22(1):36-39)
[28]罗丽华, 陈建华, 苏冬梅, 等.板栗组培过程中褐变研究初探[J]经济林研究, 2003, 21(4): 30-31(Luo L H, Chen J H, Su D M, et al.Primary study on the browning of chestnut in plant tissue culture[J]Economic Forest Researches, 2003, 21(4):30-31
[29]Meyer P.Repeat induced gene silence:Common mechanisms in plantand fungi[J]Biology Chemistry Hoppe Seyler, 1996, 377 (2): 87-95

Memo

Memo:
-
Last Update: 2015-06-07