|Table of Contents|

Genes on Phenylalanine Acid Metabolic Pathway in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2012年02期
Page:
178-183
Research Field:
Publishing date:

Info

Title:
Genes on Phenylalanine Acid Metabolic Pathway in Soybean
Author(s):
DU Xiang-yu1LIU Chun-yan2WU Qiong1JIANG Hong-wei2XIN Da-wei1CHEN Qing-shan13LUAN Huai-hai2HU Guo-hua23
1.College of Agriculture,Northeast Agricultural University,Harbin 150030;
2.The Crop Research and Breeding Center of Land-Reclamation,Harbin 150090;
3.The National Research Center of Soybean Engineering and Technology,Harbin 150050,Heilongjiang,China
Keywords:
SoybeanPhenylalanine acidGeneMappingGene structure
PACS:
S565.1
DOI:
10.3969/j.issn.1000-9841.2012.02.004
Abstract:
Synthesis of key enzyme genes on protein metabolic in soybean is quantitative traits controlled by multiple genes.Genetic markers and structural information with associated genes of plant protein synthesis can be obtained through mining the information of the key enzyme on protein synthesis in Arabidopsis.In this research,the soybean public genetic maps and physical maps ware integrated,and the key enzyme gene sequences were blasted with soybean genome database by local blast software.Nine key enzyme genes in phenylalanine acid metabolic pathway of soybean were mapped on soybean genetic map.The result indicated that these 9 enzyme genes were mapped on 13 linkage groups,including D1a,B1,N,I,O,C1,C2,F,L,A2,J,D1b,and B2,respectively.And the flanking markers of these genes on the linkage group were obtained.Furthermore,the sequence information between cDNA and gDNA was compared,the number of exon was from 5 to 12,and the number of intron was from 4 to 11.The corresponding markers obtained from the mapping are available for molecular assisted selection,and the structure information can be used in further gene function analysis.

References:

[1]Yager T D,Niekerson D A,Hood L E.The human genome project:creating an infrastructure for biology and medicine[J].Trends in Biochemical Sciences,1991,16:454.

[2]Peakall D,Shugart L.The human genome project(HGP)[J].Ecotoxicology,2002,?11(l):7-9.

[3]王丽侠,常汝镇,邱丽娟.大豆基因组计划研究进展[J].中国油料作物学报,200325(4):129-133.Wang L X,Chang R Z,Qiu L J.Research progress of soybean genome project[J].Chinese Journal of Oil Crop Sciences,200325(4):129-133.

[4]Cheung F,Xiao Y,Chan A,et al.http://www.ncbi.nlm.nih.gov/protein/ACU21076.1

[5]Betz G A B.Influence of ozone on the regulation of shikimate metabolism in the European beech(Fagus sylvatica L.).http://www.ncbi.nlm.nih.gov/protein/ABA54869.1

[6]Hu Y,Li Y,Cai M.Cloning of chorismate synthase gene from Glycine max?http://www.ncbi.nlm.nih.gov/protein/ABA90483.1

[7]Gebhardt J S,Wadsworth G J,Matthews B F.Characterization of a single soybean cDNA encoding cytosolic and glyoxysomal isozymes of aspartate aminotransferase http://www.ncbi.nlm.nih.gov/protein/AAC50015.1

[8]Gebhardt J S,Wadsworth G J,Matthews B F.Characterization of a single soybean cDNA encoding cytosolic and glyoxysomal isozymes of aspartate aminotransferase http://www.ncbi.nlm.nih.gov/protein/AAC50014.1

[9]Mazourek M,Pujar A,Borovsky Y,et al.A dynamic interface for capsaicinoid systems biology http://www.ncbi.nlm.nih.gov/protein/ACF17648.1

[10]Cheung F,Xiao Y,Chan A,et al.http://www.ncbi.nlm.nih.gov/protein/ACU24309.1

[11]Cheung F,Xiao Y,Chan A,et al.http://www.ncbi.nlm.nih.gov/protein/ACU17605.1

[12]Chan A,Puiu D,Melake A,et al.http://www.ncbi.nlm.nih.gov/protein/XP_002532209.1

[13]Chan A,Puiu D,Melake A,et al.http://www.ncbi.nlm.nih.gov/protein/XP_002511378.1

[14]Song Q J,Marek L F,Shoemaker R C,et al.A new integrated genetic linkage map of the soybean[J].Theoretical and Applied Genetics,2004,109:122-128.

[15]Panthee D R,Pantalone V R,Saxton A M,et al.Genomic regions associated with amino acid composition in soybean[J].Molecular Breeding,2006,17:79-89.

[16]Mansur L,Lark K G,Kross H,et al.Interval mapping of quantitative trait loci for reproductive,morphological and seed traits of soybean(Glycine max?L.)[J].Theoretical and Applied Genetics,1993,86:907-913.

[17]Brummer E C,Nickell A D,Wilcox J R,et al.Mapping the Fan locus controlling low linolenic acid levels in soybean[J].The Journal of Heredity,1995,86:245-247.

[18]Conclbido V C,Denny R L,Boutin S R,et al.DNA marker analysis of loci underlying resistance to soybean cyst nematode(Heterodera glycine Ichinohe)[J].Crop Science,1994,34:240-246.

[19]Yu Y G,Saghai Maroof M A,Buss G R,et al.RFLP and microsatellite mapping of a gene for soybean mosajc virus resistance[J].Phytopathology,?1994,84:60-64.

[20]朱晓双,刘春燕,杨振,.花青素合成关键酶基因的定位及结构分析[J].大豆科学,2011,30(1):24-28.(Zhu X S,Liu C Y,Yang Z,et al.Mapping and structure analysis of key enzyme genes in anthocyanin synthesis of soybean[J].Soybean Science,2011,30(1):24-28.)

[21]于妍,姜威,唐敬仙,.大豆天冬氨酸代谢途径关键酶基因电子定位与结构分析[J].大豆科学,2010,29(1):22-27.(Yu Y,Jiang W,Tang J X,et al.Electronic mapping and structure analysis of key enzyme genes on aspartic acid metabolic pathway in soybean[J].Soybean Science,2010,29(1):22-27.)

[22]宋万坤,朱命喜,赵阳林,等.大豆脂肪酸合成关键酶基因的电子定位及结构分析[J].作物学报,2009,35(10):1942-1947.(Song W K,Zhu M X,Zhao Y L,et al.In silico mapping and structure analysis of key enzyme genes in fatty acid synthesis of soybean[J].Acta Agronomica Sinica,2009,35(10):1942-1947.)

[23]Choi Y,Hyten D L,Matukumalli L K,et al.A soybean transcript map:gene distribution,haplotype and single-nucleotide polymorphism analysis[J].Genetics,2007,176:685-696.

[24]Qi Z M,Sun Y N,Wu Q,et al.A meta-analysis of seed protein concentration QTL in soybean[J].Canadian Journal of Plant Science,2011,91:221-230.

Memo

Memo:
-
Last Update: 2014-08-15