|Table of Contents|

Transgenic Soybean (Glycine max. L) Plants with phyA Gene Improved Phytase Activity(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2011年03期
Page:
356-361
Research Field:
Publishing date:

Info

Title:
Transgenic Soybean (Glycine max. L) Plants with phyA Gene Improved Phytase Activity
Author(s):
YAN Rui-ye1 LI Xi-huan1 LI Gui-lan2 CHANG Wen-suo1 ZHANG Cai-ying1
1. North China Key Laboratory of Crop Germplasm Resources, Education Ministry of China, Agricultural University of Hebei, Baoding 071001;
2. Life Science and Technology College, Hebei Normal University of Science & Technology, Changli 066600, Hebei, China
Keywords:
Soybean Phytase gene Genetic transformationAgrobacterium-mediated
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2011.03.0356
Abstract:
Organic phosphorus (P) is the main form of phosphorus in soil, of which the phytate accounted for more than 50%. The available way that improves plant P nutrition is to hydrolyze phytate into inorganic phosphorus (Pi) to increase the soil P utilization efficiency. In this study, a phytase gene (phyA), driven by the root-specific pyk10 promoter and directed by a carrot extracellular targeting peptide, was introduced into different soybean varieties (Jidou 12, Jidou 16, Wuxing 1 and Jilin 35) by Agrobacterium-mediated and pollen tube pathway transformation method. PCR analysis results showed that the phyA was successfully integrated into the soybean genome. Total 114, 101 and 28 PCR positive plants were obtained from T0, T1 and T2 generation, respectively. The results also showed that the T4 generation plants could grow better than wild-type when cultured under the condition in which phytate was the sole source of phosphorus. And the secreted phytase activities of roots also indicated that three transgenic lines were increased by 5%, 13% and 24% compared to the wild-type plants, respectively.

References:

[1]Lung S C, Lim B L. Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco ( Nicotiana tabacum ) is affected by the availability of soluble phytate[J]. Plant and Soil, 2006, 279:187-199.

[2]李桂兰,祝建洪,孙建,等. 无花果曲酶植酸酶基因phyA的克隆、序列分析及表达[J]. 农业生物技术学报,2003,11(5):520-524. (Li G L, Zhu J H, Sun J, et al. Cloning, sequence analysis and expression of the phytase?phyA?gene from Aspergillus ficuum?[J]. Journal of Agricultural Biotechology, 2003, 11(5): 520-524.)

[3]乔亚科,李桂兰. 作物耐低磷机制及耐低磷育种研究进展[J]. 河北科技师范学院学报,2007211):67-73. Qiao Y K, Li G L. Research advance in mechanism of plant tolerance to low phosphorous and breeding[J]. Journal of Hebei Normal University of Science & Technology, 2007, 21(1): 67-73.

[4]Greiner R, Konietzny U. Phytase for food application[J]. Food Technology and Biotechnology, 2006, 44 (2): 125-140.

[5]Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus?phytase from Arabidopsis?roots enables plants to obtain phosphorus from phytate[J]. The Plant Journal, 2001, 25 (6): 641-649.

[6]Zimmermann P, Zardi G, Lehmann M, et al. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts[J]. Plant Biotechnology Journal, 2003, 1 (5): 353-360.

[7]Yan B, Reddy M S S, Collins G B, et al. Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max?(L.) Merrill.] using immature zygotic cotyledon explants[J]. Plant Cell Reports, 2000, 19 (11): 1090-1097.

[8]张琪,陈茹梅,杨文竹,等. 组成型表达转植酸酶基因(phyA2)玉米的获得[J]. 农业生物技术学报,2010184):623-629. Zhang Q, Chen R M, Yang W Z, et al. The obtaining of transgenic Maize plants with PhyA2?gene constitutive express phytase[J]. Journal of Agricultural Biotechnology, 2010, 18(4): 623-629.

[9]Li G L, Yang S H, Li M G, et al. Functional analysis of an Aspergillus ficuum?phytase gene in Saccbaromyces cerevisiae?and its root-specific, secretory expression in transgenic soybean plants[J]. Biotechnology Letters, 2009, 31 (8): 1297-1303.

[10]Xiao K, Zhang J H, Harrison M, et al. Ectopic expression of a phytase gene from Medicago truncatula?barrel medic enhances phosphorus absorption in plants[J]. Journal of Integrative Plant Biology, 2006, 48 (1): 35-43.

[11]Ma X F, Wright E, Ge Y X, et al. Improving phosphorus acquisition of white clover (Trifolium repens?L. by transgenic expression of plant-derived phytase and acid phosphatase genes[J]. Plant Science, 2009,176 (4): 479-488.

[12]Yan X L, Wu P, Ling H Q, et al. Plant nutriomics in China: An overview[J]. Annals of Botany, 2006, 98 (3): 473-482.

[13]严小龙,张福锁. 植物营养遗传学[M]. 北京:中国农业出版社,19978-9.Yan X L, Zhang F S. Plant nutrition genetics[M]. Beijing: China Agricultural Press, 1997: 8-9.

[14]周志高,汪金舫,周健民. 植物磷营养高效的分子生物学研究进展[J]. 植物学通报,2005221):82-91.Zhou Z G, Wang J F, Zhou J M. Current advances in the molecular biology of high efficient phosphorus nutrition in plants[J]. Chinese Bulletin of Botany, 2005, 22(1): 82-91.

[15]刘建中,李振声,李继云. 利用植物自身潜力提高土壤中磷的生物有效性[J]. 生态农业研究,199421):16-23.Liu J Z, Li Z S, Li J Y. Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil[J]. Eco-Agriculture Research, 1994, 2 (1): 16-23.

[16]韩胜芳,谷俊涛,肖凯. 高效表达黑曲霉PhyA基因改善白三叶草对有机态磷的利用[J]. 作物学报,2007332):250-255.Han S F, Gu J T, Xiao K. Improving organic phosphate utilization in transgenic white clover by over expression of PhyA?gene from Aspergillus niger[J]. Acta Agronomica Sinica, 2007, 33(2): 250-255.

[17]李进,侯海军,黄复深,等. 基因枪介导获得转植酸酶基因水稻研究[J]. 应用与环境生物学报,2008141):6-10.Li J, Hou H J, Huang F S, et al. Transformation of phytase gene into rice by particle bombardment[J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(1): 6-10.

[18]刘欣芳,高晓蓉,苏乔,等. 转植酸酶基因玉米的获得及其后代的初步鉴定[J]. 玉米科学,2008161):15-19.Liu X F, Gao X R, Su Q, et al. Transconduct phyAII?gene into maize inbred lines and the elementary apprise of transgenic progency[J]. Journal of Maize Sciences, 2008, 16(1): 15-19.

[19]Lung S C, Chan W L, Yip W K, et al. Secretion of beta-propeller phytase from tobacco and Arabidopsis?roots enhances phosphorus utilization[J]. Plant Science, 2005, 169 (2): 341-349.

[20]刘海坤,卫志明. 大豆遗传转化研究进展[J]. 植物生理与分子生物学学报,2005312):126-134.Liu H K, Wei Z M. Recent advances in soybean genetic transformation[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(2): 126-134.

[21]于洋,侯文胜,韩天富. 农杆菌介导大豆遗传转化技术的研究进展[J]. 大豆科学,2010294):696-701.Yu Y, Hou W S, Han T F. Approaches to Agrobacterium-mediated transformation in soybean[J]. Soybean Science, 2010, 29(4): 696-701.

[22]Casas A M, Kononowicz A K, Bressan R A,et al. Cereal transformation through particle bombardment [J]. Plant Breeding Reviews, 1995, 13: 235-264.


Memo

Memo:
-
Last Update: 2014-09-11