|Table of Contents|

Application of Transgenic Technology in Soybean Breeding(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2011年02期
Page:
333-336
Research Field:
Publishing date:

Info

Title:
Application of Transgenic Technology in Soybean Breeding
Author(s):
LIAN Yun1 LIANG Hui-zhen1 YU Yong-liang1 WANG Shu-feng1 WEI Yan-li1 DONG Wei1ZHANG Meng-chen2 JIANG Chun-zhi2
1. National Soybean Improvement Center Zhengzhou Sub-center, Institute of Economic Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan;
2. National Soybean Improvement Center Shijiazhuang Sub-center, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, Hebei, China
Keywords:
Soybean Selectable marker genes Genetic transformationTransgenic technology
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2011.02.0333
Abstract:
A prerequisite for plant genetic engineering is to produce transgenic plants. Selectable marker genes have been widely used in plant transformation because of the low efficiency of transgenic integration. However, the use of selectable marker genes would affect the safety evaluation of transgenic plants and there are perceived risks in bio-safety and environmental safety. An effective soybean transformation system is necessary to breed new soybean varieties in improving the yield, quality and resistance. In this review, the new selectable marker genes in soybean breeding and transgenic technology in crops breeding were summarized.

References:

[1]Daley M, Knauf K R, Summerfert K R, et al. Co-transformation with one Agrobacterium tumefaciens ?strain containing two binary plasmids as a method for producing marker-free transgenic plants[J]. Plant Cell Reports, 1998, 17:489-496.

[2]Donaldson P A, Simmond D H. Susceptibility to Agrobacterium tumefaciens?and cotyledonary node transformation in short-season soybean[J]. Plant Cell Reports, 2000, 19:478-484.

[3]Ebinuma H, Sugita K, Matsunaga E, et al. Systems for the removal of a selection marker and their combination with a positive marker[J]. Plant Cell Reports, 2001, 20:383-392.

[4]Endo S, Sugita K, Sakai M, et al. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system[J]. Plant Journal, 2002, 30: 115-122.

[5]Song H Y, Ren X S, Si J, et al. Construction of marker-free GFP transgenic tobacco by Cre/lox site-specific recombination system[J]. Scientia Agricultura Sinica, 2008, 41(10):2973-2982.

[6]Rao S S, Mamadou L, McConnell M, et al. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent[J]. BMC Biotechnology, 2009, 9: 94.

[7]Pornprom T, Usui K Ishizuka K. Growth inhibition and acetolactate synthase activity of soybean seedlings and suspension-cultured cells treated with bensulfuron-methyl[J]. Weed Biology Management, 2005, 5:150-153.

[8]Kawai K, Kaku K, Izawa N, et al. A novel mutant acetolactate synthase gene from rice cells, which confers resistance to ALS-inhibiting herbicides[J]. Journal of Pesticide Science, 2007, 32:89-98.

[9]Tougou M, Yamagishi N, Furutani N, et al. The application of the mutated acetolactate synthase gene from rice as the selectable marker gene in the production of transgenic soybeans[J]. Plant Cell Reports, 2009, 28:769-776.

[10]Ganapathi T R, Higgs N S, Balint-Kurti P J, et al. Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB) [J]. Plant Cell Reports, 2001, 20:157-162.

[11]Ray K, Jagannath A, Gangwan S A, et al. Mutant acetolactate synthase gene is an efficient in vitro?selectable marker for the genetic transformation of Brassica juncea(oilseed mustard) [J]. Journal of Plant Physiology, 2004, 161:1079-1083.

[12]Park J, Lee Y K, Kang B K, et al. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants[J]. Theoretical and Applied Genetics, 2004, 109:1562-1567.

[13]Vidal J R, Kikkert J R, Wallace P G, et al. High-efficiency biolistic co-transformation and regeneration of Chardonnay (Vitis vinifera?L.) containing npt-II and antimicrobial peptide genes[J]. Plant Cell Reports, 2003, 22:252-260.

[14]Eckert H, La Vallee B, Schweiger B J, et al. Co-expression of the borage Delta 6 desaturase and the Arabidopsis?Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean[J]. Planta, 2006, 224:1050-1057.

[15]Eenennaam A L V, Lincoln K, Durrett T P, et al. Engineering Vitamin E content: from Arabidopsis?mutant to soy oil[J]. The Plant Cell, 2003, 15:3007-3019.

[16]Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immunodominant allergen from soybean[J]. Plant Physiology, 2003, 132:36-43.

[17]Shi J, Wang H, Schellin K, et al. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds[J]. Nature Biotechnology, 2007, 25:930-937.

[18]Nunes A C, Vianna G R, Cuneo F, et al. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content[J]. Planta, 2006, 224:125-132.

[19]Olhoft P M, Flage L E, Donovan C M, et al. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method[J]. Planta, 2003, 216(5):723-735.

[20]Zeng P, Vadnais D A, Zhang Z, et al. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill][J]. Plant Cell Reports, 2004, 22(7):478-482.

[21]Paz M M, Shou H X, Guo Z B, et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant[J]. Euphytica, 2004, 136(2):167-179.

[22]Sato H, Yamada T, Kita Y, et al. Production of transgenic plants and their early seed set in Japanese soybean variety, Kariyutaka[J]. Plant Biotechnology, 2007, 24:533-536.

[23]McCabe D E, Swain W F, Martinell B J, et al. Stable transformation of soybean (Glycine max) by particle acceleration[J]. Biotechnology, 1988, 6: 923-926.

[24]Finer J J, McMullen M D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue[J]. In vitro Celluar and Developmental Biology - Plant, 1991, 27:175-182.

[25]El-Shemy H A, Khalafalla M M, Wakasa K, et al. Reproducible transformation in two grain legumes-soybean and azuki bean-using different systems[J]. Cellular & Molecular Biology Letters, 2002, 7:709-719.

[26]El-Shemy H A, Teraishi M, Khalafalla M M, et al. Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein[J]. Molecular Breeding, 2004, 14:227-238.

[27]Khalafalla M M Rahman S M, El-Shemy H A, et al. Optimization of particle bombardment conditions by monitoring of transient sGFP(S65T) expression in transformed soybean[J]. Breeding Science, 2005, 55:257-263.

[28]Parrott W A, Hoffman L M, Hildebrand D F, et al. Recovery of primary transformants of soybean[J]. Plant Cell Reports, 1989, 7:615-617.

[29]Yan B, Srinivasa R M S, Collins G B, et al. Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max?(L.) Merrill.]using immature zygotic cotyledon explants[J]. Plant Cell Reports, 2000, 19:1090-1097.

[30]Terakawa T, Hisakazu H Masanori Y. Efficient whisker-mediated gene transformation in a combination with supersonic treatment[J]. Breeding Science, 2005, 55:456-358.

[31]Khalafalla M M, El-Shemy H A, Rahman S M, et al. Efficient production of transgenic soybean[Glycine max?(L.Merrill]plants mediated via whisker-supersonic (WSS) method[J]. African Journal of Biotechnology, 2006, 5:1594-1599.

[32]Tougou M, Furutani N, Yamagishi N, et al. Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus[J]. Plant Cell Reports, 2006, 25:1213-1218.

[33]Tougou M, Yamagishi N, Furutani N, et al. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene[J]. Plant Cell Reports, 2007, 26:1967-1975.

[34]Liu H K, Chao Y, Wei Z M. Effficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system[J]. Planta, 2004, 219:1042-1049.

[35]魏凌基,王咏星,张薇. 大麦花药离体培养及植株再生研究初报[J]. 石河子农学院学报, 1995, 32 (4):60.(Wei L J, Wang Y X, Zhang W. A preliminary report on the study of Hordeum Sativum Jess anther in vitro?culture and plantlet regeneration[J]. Journal of Shihezi University, 1995, 32 (4):60.)

[36]韩晓峰,陶丽莉,殷桂香,等. 基因型和环境条件对小麦花药培养效果的影响[J]. 作物学报, 2010, 36(7): 1209-1215.(Han X F, Tao L L, Yin G X, et al. Effect of genotype and growing environment on anther culture in wheat[J]. Acta Agronomica Sinica, 2010, 36(7):1209-1215.)

[37]隋新霞,樊庆琦,李根英,等. 小麦花药培养研究进展[J]. 麦类作物学报, 2005, 25 (4):127-131. (Sui X X, Fan Q Q, Li G Y, et al. Review on wheat anther culture[J]. Journal of Triticeae Crops, 2005, 25(4):127-131.)

[38]付迎军. 玉米离体花药培养体系的建立[J]. 延边大学农学学报, 2004, 26(1):1-5. (Fu Y J. System establishment of maize anther culture in vitro[J]. Journal of Agricultural Science Yanbia University, 2004, 26(1):1-5.)

[39]李艳萍. 水稻花药培养与花培育种研究[J]. 天津农业科学, 2004,9(4): 36-39. ( Li Y P. Rice anther culture and anther-culture breeding[J]. Tianjin Agricultural Sciences, 2004, 9(4):36-39.)

[40]Ivers D R, Palmer R R, Fehr W R. Anther culture in soybean[J]. Crop Science, 1974, 14:891-893.

[41]母秋华, 杨玉环,张三顺. 花药培养学术讨论会文集[C]. 北京: 科学出版杜, 1977: 302-303. ( Mu Q H, Yang Y H, Zhang S S. Seminars corpus on anther culture[C]. Beijing: Science Press,1977: 302-303.)

[42]简玉瑜, 罗希明, 赵桂兰, . 花药培养学术讨论会文集[C]. 北京: 科学出版杜, 1977:209-211. (Jian Y Y, Luo X M, Zhao G L, et al. Seminars corpus on anther culture[C]. Beijing: Science Press, 1977: 209-210.)

[43]简玉瑜, 孙玉华,陈永祥,.大豆花药培养的研究[J]. 吉林农业科学,1980(2):54-61. (Jian Y Y, Sun Y H, Chen Y X, et al. Study on another culture of soybean[J]. Journal of Jilin Agricultural Sciences, 1980(2):54-61.)

[44]尹光初, 李学湛,朱之垠, . 大豆花粉育株的研究[J]. 黑龙江农业科学, 1981(1):12-14. (Yin G C, Li X Z, Zhu Z Y, et al. Study on pollen sterile of soybean[J]. Journal of Heilongjiang Agricultural Sciences, 1981(1):12-14.)

[45]尹光初, 朱之垠,徐振, . 大豆花粉植株的诱导及其雄核发育的研究[J]. 大豆科学, 1982, 1(1): 69-75. (Yin G C, Zhu Z Y, Xu Z, et al. Studies on induction of pollen plant and their androgenesis in Glycine max(L.) Merr[J]. Soybean Science, 1982, 1(1):69-75.)

[46]刘德璞, 赵桂兰. 大豆花粉离体培养获得愈伤组织[J]. 大豆科学, 1986, 5(1):49-55. (Liu D P, Zhao G L. Calli were induced from anthers of soybean[J]. Soybean Science, 1986, 5(1):49-55.)

[47]叶兴国, 王连铮. 大豆花药培养研究进展[J]. 大豆科学, 1995, 14(4): 349-354. (Ye X G, Wang L Z. Advances of anther culture in soybean[J]. Soybean Science, 1995, 14(4):349-354.)

[48]Li R, Ma Z, Wang Q, et al. Identification and screening on insect resistance of Bt/CpTI?transgenic cottons[J]. Plant Genetic Resources, 2005, 6:409-413.

[49]Wu X, Wang J, Zhu Z, et al. Study of transgenic cotton carrying Bt-CpTI-GNA?genes[J]. Cotton Science, 2005, 17:353-359.

[50]Guo J, Zhu X, Guo W, et al. Inheritance analysis and resistance of the transgenic cotton harboring Bt + sck?double genes to Helicoverpa armigera[J]. Cotton Science, 2007, 19:88-92.

[51]Li F F, Wu S J, Chen T Z, et al. Agrobacterium-mediated co-transformation of multiple genes in upland cotton[J]. Plant Cell Tissue Organ Culture, 2009, 97:225-235.

[52]Raffeiner B, Serek M Winkelmann T. Agrobacterium tumefaciens-mediated transformation of Oncidium?and Odontoglossum orchid?species with the ethylene receptor mutant gene etr1-1[J]. Plant Cell Tissue Organ Culture, 2009, 98:125-134.

[53]Hileman B. Prodigene and Starlink incidents provide ammunition to critics[J]. Chemical Engeering News, 2003, 81:25-33.

[54] Murphy D J. Improving containment strategies in biopharming[J]. Plant Biotechnology, 2007, 5:555-569.

[55]Shekhawat U K S, Ganapathi T R, Srinivas L, et al. Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album?L.[J]. Plant Cell Tissue Organ Culture, 2008, 92:261-271.

[56]Polin L D, Liang H, Rothrock R E, et al. Agrobacterium-mediated transformation of American chestnut [Castanea dentata?(Marsh.) Borkh.] somatic embryos[J]. Plant Cell, Tissue and Organ Culture, 2006, 84:69-78.


Memo

Memo:
-
Last Update: 2014-09-11