|Table of Contents|

Effect of Low Molecular Weight Organic Acids on Root Morphology and Phosphorus Accumulation in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2009年02期
Page:
210-216
Research Field:
Publishing date:

Info

Title:
Effect of Low Molecular Weight Organic Acids on Root Morphology and Phosphorus Accumulation in Soybean
Author(s):
WANG Shu-qi12HAN Xiao-zeng1QIAO Yun-fa1WANG Shou-yu1YAN Jun1LI Xiao-hui1
1Northeast Institute of Geography and Agricultural Ecology,Chinese Academy of Sciences,Harbin 150081,Heilongjiang,China;
2Institute of Applied ecology,Chinese Academy of Sciences,Shenyang 110016,Liaoning,China
Keywords:
Low molecular weight organic acidsRoot morphologyPhosphorus accumulationPhosphorus efficiencySoybean
PACS:
S565.1
DOI:
10.11861/j.issn.1000-9841.2009.02.0210
Abstract:
Most of the farmlands in the world are lack of phosphorus,organic acids exudates from plant root increase under phosphorus deficiency,the plants form several adaptability mechanisms to adapt the phosphorus deficiency environment.In this study,three low molecular weight organic acids(citric acid,oxalic acid,malic acid and their mixture)were selected to study the effect on root morphology and phosphorus accumulation in soybean by sand culture experiment,the results showed that soybean root biomass,root to shoot ratio,root length,root surface area and root volume all significantly decreased under different low molecular organic acids treatments compared with control,and the inhabitation enhanced with the concentration increasing,suggested that the low molecular weight organic acids restrained the growth of soybean,and made the competition of soybean root decreased.Meanwhile the efficiency of phosphorus absorption decreased significantly while the efficiency of phosphorus utilization increased under the low molecular weight organic acids treatment compared with control.

References:

[1]Chaves M M,Maroco J P Pereira J S,et al.Understanding plant responses to drought-from genes to the whole plant[J].Functional Plant Biology,2003,30:239-264.

[2]Liang B M,Sharp R E,Baskin T I.Regulation of growth anisotropy in well-watered and water-stressed maize roots I.Spatial distribution of longitudinal,radial,and tangential expansion rates[J].Plant Physiology,1997,115:101-111.
[3]Davies W J,Wilkinson S,Loveys B.Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J].New Phytologist,2002,153:449-460.
[4]Bruce W B,Edmeades G O,Barker T C.Molecular and physiological approaches to maize improvement for draught tolerance[J].Journal Experiment Botany,2002,53:13-25.
[5]Lynch J.Root architecture and plant productivity[J].Plant Physiology,1995,109:7-13.
[6]Wilkinson S,Davies W J.ABA-based chemical signaling:the co-ordination of responses to stress in plants[J].Plant,Cell and Environment,2002,25:195-210.
[7]Zhang F S,Ma J,Cao Y P.Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish(Raphanus sativus L.)and rape(Brassica napus L.)plants[J].Plant Soil,1997,196:261-264.
[8]Hoffland E.Mobilization of rock phosphate by rape(Brassica napus L.).Wageningen:Wageningen Agricultural University,1991:1-93.
[9]Lipton D S,Blanchar R W,Blevins D G.Citrate,malate and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L.seedings[J].Plant Physiology,1987,85:315-317.
[10]Dinkelaker,Romheld B V,Marchner H.Citric acid excretion and precipitation of calcium citrate in rhizosphere of white lupin(Lupinus albus L.)[J].Plant,Cell and Environment,1989,12:285-295.
[11]Aguilar S A,Van Diest A.Root-phophate metabolism induced by the alkaline uptake pattern of legume utilizing symbiotically fixed nitrogen[J].Plant Soil,1981,61:27-42.
[12]Bekes T,Cibo B J,Ehlert PAI,et al.An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphate[J].Plant Soil,1983,75:361-378.
[13]Hinsinger P,Elsass F,Jaillard B,et al.Root -induced irreversible transformation of a triotahedral mica in the rhizophere of rape[J].Journal of Soil Science.1993,44:535-545.
[14]Hinsinger P,Gilkes R J.Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil[J].Australian Journal of Soil Research.1995,33:477-489.
[15]郜红建,常江,张自立,等.研究根系分泌物的方法[J].植物生理学通讯,2003,39(1):56-60.(Gao H J,Chang J,Zhang Z L,et al.Methods for investingating root exudates of plants[J].Plant Physiology Communications,2003,39(1):56-60.)
[16]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29:237-250.(Zhang F S,Cao Y P.Rhizosphere dynamics and plant nutrition[J].Acta Pedologica Sinica,1992,29:237-250.)
[17]王应祥,廖红,严小龙.大豆适应低磷胁迫的机理初探[J].大豆科学,2003,22(3):208-212.(Wang Y X,Liao H,Yan X L.Preliminary studies on the mechanisms of soybean in adaptation to low P stress[J].Soybean Science,2003,22(3):208-212.)
[18]刘慧,刘景福,刘武定.不同磷营养油菜品种根系形态及生理特性差异研究[J].植物营养与肥料学报,1999,5(1):40-45.(Liu H ,Liu J F,Liu W D.Differences of root morphology and physiological characteristics between two rape genotypes with different P efficiency[J].Plant Nutrition and Fertilizer Science,1999,5(1):40-45.)
[19]王树起,韩丽梅,杨振明.不同有机酸对大豆生长的化感效应[J].大豆科学,2002,21(4):267-273.(Wang S Q,Han L M,Yang Z M.Allelopathy of different organic acids on soybean growth[J].Soybean Science,2002,21(4):267-273.)
[20]王树起,韩丽梅,杨振明.丙二酸和邻苯二甲酸对大豆生长发育的化感效应[J].吉林农业科学,2001,26(5):15-19.(Wang S Q,Han L M,Yang Z M.Allelopathy of 1,2-benzennedicarboxylic acid and malonic acid on soybean growth[J].Jilin Agricultural Sciences,2001,26(5):15-19.)
[21]黄运湘,廖柏寒,王志坤.镉胁迫对大豆生长及籽粒中营养元素含量的影响[J].安全与环境学报,2008,2:11-15.(Huang Y X,Liao B H,Wang Z K.Effect of cadmium stress on growth of soybeans and the contents of nutrition elements in soybean grains[J].Journal of Safety and Environment,2008,2:11-15.)
[22]金婷婷,刘鹏,徐根娣,等.外源有机酸对铝毒胁迫下大豆根系形态的影响[J].中国油料作物学报,2003,28(3):302-308.(Jin T T,Liu P,Xu G D,et al.Effect of exogenous organic acids on morphological characteristics of soybean roots under aluminum stress[J].Chinese Journal of Oil Crop Sciences,2003,28(3):302-308.)
[23]严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997,106:39-41.(Yan X L,Zhang F S.Plant nutrition genetics[M].Beijing:Chinese Agricultural Press,1997,106:39-41.)
[24]严小龙,黄志斌,卢仁俊,等.关于作物磷效率的遗传学研究[J].土壤,1992,24:102-105.(Yan X L,Huang Z B,Lu R J,et al.Genetics study about crop phosphorus efficiency[J].Soils,1992,24:102-105.)
[25]丁洪,李生秀.磷素营养与大豆生长和共生固氮的关系[J].西北农业大学学报,1998,26(5):67-70.(Ding H,Li S X.The Relation of phosphorous nutrition to growth and symbiotic nitrogen fixation of soybean cultivars[J].The Journal of Northwest Agricultural University,1998,26(5):67-70.)
[26]苗淑杰,乔云发,韩晓增,等.大豆根系特征与磷素吸收利用的关系[J].大豆科学,2007,26(1):16-20.(Miao S J,Qiao Y F,Han X Z,et al.Relationship between root characters and phosphorus absorption in soybean[J].Soybean Science,2007,26(1):16-20.)
[27]童学军,李惠珍,章文贤,等.低磷胁迫下溶液培养大豆生长和磷素营养特性及其土培下磷效率特性的关系[J].植物营养与肥料学报,2001,7(3):298-304.(Tong X J,Li H Z,Zeng H T,et al.Effects of low P stress on growth and P nutrition of soybean in solution culture and its correlation with P efficiency of soybean in pot test[J].Plant Nutrition and Fertilizer Science,2001,7(3):298-304.)

Memo

Memo:
-
Last Update: 2014-10-03