|Table of Contents|

QTL MAPPING FOR 100-SEED FRESH WEIGHT IN VEGETABLE SOYBEAN(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2007年06期
Page:
853-856,878
Research Field:
Publishing date:

Info

Title:
QTL MAPPING FOR 100-SEED FRESH WEIGHT IN VEGETABLE SOYBEAN
Author(s):
ZHAO Jin-mingMENG Qing-changZHANG Yu-meiZHANG Yi-nanGAI Jun-yiYU De-yueXING Han
National Center of Soybean Improvement/College of Agriculture,Nanjing Agricultral University/National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nan jing 210095
Keywords:
Vegetable soybean100-seed fresh weightQTL Mapping
PACS:
S565.1
DOI:
10.3969/j.issn.1000-9841.2007.06.009
Abstract:
100-seed fresh weight is an important quality trait of vegetable soybean. The objective of the present study was to map QTL for 100-seed fresh weight of vegetable soybean. The Recombinant Inbred Lines(RIL),including 158 lines,from the cross BOGAO×NG94-156,were used as experimental materials in this study. Based on the linkage map constructed mainly with Single Sequence Repeat (SSR)markers using this RIL population,the software WinQTL Cart V2-5 and the composite interval mapping were employed to identify quantitative traits loci(QTL)associated with 100-seed fresh weight in 2005 and 2006 years. It was found that the results of mapping QTL for 100-seed fresh weight were similar for these two years. Two QTLs mapped on linkage group G could be detected in two years,and they could be explained 7.64%~12.74% of the total variation of the 100-seed fresh weight,respectively. In addition,the software QTL Mapper 1.6 was applied to detect QTLs and estimate additive environment interaction effects of QTLs. The result indicated that the results of mapping QTL for 100-seed fresh weight were similar for these two methods. There was one QTL with additive -environment interaction effect,and the value is 1.18%.The SSR marker acquired by QTL mapping for 100-seed fresh weight in this study,was served as a solid platform for the molecular marker assisted selection.

References:

[1]Lin C C. Frozen edamame:Global market conditions[C]. Ibid,2001,93-96.

[2]陈庆山,张忠臣,刘春燕,等.大豆主要农艺性状的QTL分析[J].中国农业科学,2007,40(1):41-47.
[3]Chapman A,Pantalone V R,Ustun A,et al. Quantitative trait loci for agronomic and seed quality traits in an F2and F4:6soybean population[J]. Euphytica,2003,129:387-393.[4]郑天琪,连成才,王成,等.春大豆百粒重与气象条件间关系的初步研究[J].大豆科学,1998,17(2):141-146.
[5]王贤智,张晓娟,周蓉,等. 大豆重组自交系群体荚粒性状的QTL分析[J].作物学报,2007,33(3):441-448.
[6]王仁晓,李培金,陈红旗,等.水稻顶节间长度控制基因(EUI)的精细定位[J]. 遗传学报,2005,32(9):955-959.
[7]郑康乐. 水稻抽穗期基因的精细定位、克隆和生物学功能分析[J]. 中国水稻科学,2005,19(1):85-90.
[8]丁效华. 作物数量性状基因图位克隆研究进展[J]. 植物遗传资源学报,2005,6(4):464-468
[9]Frary A,Nesbitt T C,Grandillo S,et al.Cloning and transgenic expression of fw2.2:a quantitative traits locus key to the evolution of tomato fruits[J]. Science,2000,289:85-87.
[10]Lincoln S E,Lander S L. Mapmaker/exp 3.0 and Mapmaker/QTL1.1[M].Whitehead Institute of Medical Research. Technical Report. Cambridge,MA,1993
[11]Cregan P B,Jarvik T,Bush A L,et al. An integrated genetic linkage map of the soybean genome[J]. Crop Science,1999,39(5):1464-1490.
[12]Wang S C,Basten C J,Zeng Z B. Cartographer V.2.5. 2005,[Online]Available at http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
[13]Churchill A G,Doenge R W.Empirical threshold values for quantitative trait mapping[J]. Genetics,1994,138(3):963-971.
[14]Wang D L,Zhu J,Li Z K,et al. QTL Mapper Version 1.6[M]. Copyright 2003 by Zhejiang University,Texas A&M University.
[15]孟庆长. 大豆GmNAC和GmLFY转录因子编码基因的克隆、鉴定和种子性状的QTL定位研究[D].南京农业大学博士学位论文,2006.
[16]高用明,朱军,宋佑胜,等. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析[J].作物学报,2004,30(9):849-854.
[16]曹立勇,朱军,任立飞,等. 水稻幼苗活力相关性状的QTLs定位和上位性分析[J].作物学报,2002,28(6):809-815.
[17]曹立勇,朱军,颜启传,等. 水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析[J].中国水稻科学,2002,16(3):221-224.
[18]徐鹏,王慧,李群,等. 大豆油份含量QTL的定位[J].遗传,2007,29(1):92-96.
[19]郭咏梅,刘家富,李自超,等. 水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位[J].作物学报,2007,33(1):50-56.

Memo

Memo:
-
Last Update: 2014-10-19