# 高效液相色谱法测定豆粕中染料木素 和大豆苷元的含量<sup>\*</sup>

# 阮洪生 葛文中 安红波

(黑龙江八一农垦大学生命科技学院,大庆 163319)

摘要 采用高效液相色谱法测定豆粕中染料木素和大豆苷元的含量。色谱条件:十八烷基键合硅 胶柱;流动相:甲醇—水(6:4);流速:0.80 mL/min;检测波长:260 nm。结果本方法操作简便、快速、准确,可用于豆粕中染料木素和大豆苷元的质量控制方法。

关键词 豆粕;染料木素;大豆苷元;高效液相色谱法

中图分类号 S565.1 文献标识码 A 文章编号 1000 - 9841(2006)04 - 0461 - 03

大豆异黄酮(soybean isoflavones)是存在于大豆中的生物活性成分。目前发现的大豆异黄酮共有12 种,分为游离型苷元(Aglycon)和结合型糖苷(Glucosides)两类[1]。游离型苷元以染料木素、大豆苷元和黄豆黄素为主。现代药理学研究表明:大豆异黄酮除具有抗氧化作用外,还可作为雌性激素治疗的替代品,改善妇女更年期综合症,并具有降低血液胆固醇、防止骨质疏松及抑制癌细胞生长的作用[2]。还具有防止心血管疾病、抗菌等多种功能[3~6]。现在已经广泛应用于食品、医药等行业。其药效物质基础为染料木素、大豆苷元和黄豆黄素。本实验采用高效液相色谱法建立豆粕中染料木素、大豆苷元的含量测定方法,以确定豆粕中大豆异黄酮的质量控制方法。

# 1 材料与方法

#### 1.1 主要仪器

Shimadzu LC2010H T 高效液相色谱仪(日本岛津)、Shimadzu LC Solution 色谱工作站、RE - 85Z 旋转蒸发仪(上海亚荣生化仪器厂)、HS3120 超声波清洗器(天津市恒奥科技发展有限公司),电子调温电热套 1000 mL(天津泰斯特仪器有限公司)。

#### 1.2 试剂与原料

95 %乙醇(哈尔滨新春化工厂)、色谱甲醇(天津市福晨化学试剂厂);豆粕(哈尔滨吉庆豆业有限公司)、染料木素、大豆苷元(含量测定用,纯度大于98 %,成都思科华生物技术有限公司)。水为娃哈哈纯净水。

#### 1.3 色谱条件

采用 RP - HPLC 测定豆粕中染料木素和大豆苷元的含量。色谱柱: Shim - pack VP - ODS 柱(4.6mm×150mm,5um); 柱温: 30 °C; 流动相: 甲醇-水(6:4); 流速为 0.80 mL/min; 检测波长: 260 nm; 进样量: 20uL。

# 2 实验方法

#### 2.1 对照品溶液制备

精密称取染料木素对照品 1.5 mg 置于 10 mL 容量瓶中,加入甲醇溶解并稀释至刻度,摇匀,经 0.45  $\mu$ m 微孔滤膜过滤,滤液作为对照品溶液。大豆苷元对照品 1.2 mg 置于 10 mL 容量瓶中,加入甲醇溶解并稀释至刻度,摇匀,经 0.45 um 微孔滤膜过滤,滤液作为对照品溶液。

#### 2.2 供试品溶液的制备

取豆粕 20 g, 精密称定, 加至 500m L 磨口锥形瓶中, 准确加入 75 % 乙醇 200 m L, 回流提取 2 次,

<sup>\*</sup> 收稿日期: 2006 - 05 - 18

课题来源: 黑龙江省大庆市科研课题: 200294

作者简介: 阮洪生(1973 – ), 男, 硕士, 讲师, 主要从事中药学的科研和教学工作。

<sup>-</sup> Nii: - Right - Rig

每次 2h, 提取液趁热过滤, 减压浓缩, 浓缩物合并, 醋酸乙脂萃取 4次, 50 mL/次, 萃取液减压浓缩, 残渣加甲醇溶解并定容至 10 ml。经 0.45 um 微孔滤膜过滤, 滤液作为供试品溶液。

## 2.3 标准曲线制备

精密称取染料木素对照品溶液和大豆苷元对照品溶液各 0.5 mL 摇匀,作为混合标准品溶液。分别精密吸取上述对照品溶液 2.00 ul、4.00 ul、6.00 ul、8.00 ul、10.00 ul 注入液相色谱仪中,按上述条件测定峰面积。以对照品溶液微克数 X 为横坐标,峰面积积分值 Y 为纵坐标绘制标准曲线,计算回归方程。(标准曲线相关数据见表 1)。

表 1 标准曲线相关数据

Table 1 Correlated data of standard curve

| 组分<br>Constituent | 标准曲线<br>Standard curve | 线性范围<br>Linear range | 相关系数<br>Correlation<br>coefficient |
|-------------------|------------------------|----------------------|------------------------------------|
| 染料木素              | Y= 6509000X - 83054    | 0. 30 ~ 1. 50u g     | 0. 9995                            |
| Genistein<br>大豆苷元 | V 5445000V 55050       | 0.24 1.20            | 0.0005                             |
| D aidz ein        | Y = 5447800X - 55873   | 0. 24 ~ 1. 20u g     | 0. 9995                            |

## 2.4 精密度考察

对同一对照品溶液, 连续 6 次进样, 峰面积积分值 RSD=0.26% (n=6)。 表明精密度符合要求。

#### 2.5 重现性考察

对同一供试品溶液,连续 6 次进样,峰面积积分值 RSD=0.79% (n=6)。表明重现性符合要求。

#### 2.6 稳定性考察

取同批供试品溶液,按含量测定方法,连续进样测定 6次,每次间隔 2h,结果 6次测得峰面积积分值的 RSD=0. 35%(n=6),表明样品在 12h 内稳定。

#### 2.7 样品测定

测定 3 批样品中染料木素、大豆苷元含量, 吸取供试液 20 ul, 注入高效液相色谱仪, 用外标法测定并计算含量。结果豆粕中染料木素、大豆苷元含量每克分别不低于 14.50 ug 和 17.00 ug(n=5)见表2。

表 2 豆粕中的染料木素、大豆苷元含量测定(n=5)

Table 2 The Contends of genistein and daidzein

| 豆粕              | 染料木素 ug /g | 大豆苷元 ug/g  |
|-----------------|------------|------------|
| Soybean residue | Genistein  | Da idzei n |
| 样品 1 sample 1   | 15. 680    | 18. 772    |
| 样品 2 sample 2   | 15. 044    | 21. 254    |
| 样品 3 sample 3   | 14. 754    | 17. 356    |

## 2.8 样品与标准品色谱图

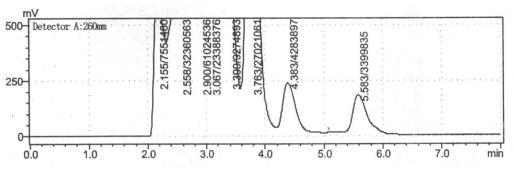



图 1 样品图谱

Fig. 1 Sample gram

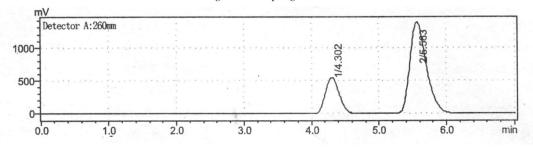



图 2 标准品图谱

Fig. 2 Standard Gram

峰 1 为大豆苷元标准品色谱; 峰 2 为染料木素标准品色谱

Peak one daidzein standard peak peak two genistein standard peak

### 保留时间和峰型完全一致。色谱图见图 1 和 2。

### 2.8 回收率试验

采用加样回收法试验。取已知含量的供试品 20g,分别加入一定量的染料木素、大豆苷元对照品,按上述色谱条件测定,其平均回收率为 99.82%,RSD 为 0.98% (n=5)。

# 3 讨论

#### 3.1 流动相的选择

为了使染料木素和大豆苷元标准品同时出峰且很好的分离,我们分别选择了甲醇一乙腈—1%磷酸  $(16:24:60)^{[7]}$ 、甲醇一水一冰乙酸 $(40:60:0.50)^{[8]}$ 、甲醇一水 $(47:53)^{[9]}$ 、甲醇一冰醋酸水溶液  $(40:60)^{[10]}$ 等流动相,结果甲醇一水(60:40)的比例可以达到最佳的分离效果。

#### 3.2 纯化路线的确定

醇提取液减压回收后的溶液采取醋酸乙脂萃取 后样品中大豆异黄酮的含量要高于醇提取液不采取 萃取的含量。

#### 参考文献

- 1 崔洪斌. 大豆生物活性物质的开发与应用[M]. 北京: 中国轻工业出版社, 2001.
- 2 Song T T, Gendirch S, Murphy P A. Estrogenic activity of glycitein, a soy isoflavone[J]. J. Agric Food Chem., 1999, 47: 1607 1610
- 3 唐传核, 彭志英. 抗过敏以及低过敏食品的研究进展[J]. 食品与发酵工业, 2000, 26(4): 44-50.
- 4 Tetsu Akiyama, Junko Ishida Genistein, a specifi inhibitor of tyrosine specific protein Kinases[J]. The Journal of Biological Chemistry, 1987, 262(12); 5592—5595.
- 5 韩祖斌, 林华, 邓思清, 等. 异黄酮类植物雌性激素依拉芳对骨代谢的作用[J]. 中国骨质疏松杂志. 1999, 5(3): 47.
- 6 李晓霞, 王宏雁, 金华丽, 等. 大豆异黄酮、大豆皂甙的提取工艺研究[J]. 中国油脂, 2002, 27(6): 41-44.
- 7 张立. RP-HPLC 法测定大豆提取物中大豆苷元、染料木素、大豆苷、染料木苷的含量[J]. 中草药, 2001, 32(2): 118-120.
- 8 王哲, 白志明、宋宏哲, 等. 高效液相色谱法测定大豆异黄酮含量的研究[1]. 中国油脂, 2003, 28(11): 82-84.
- 9 王帆、胡小钟、匡建军、等. 高效液相色谱法检测保健食品中大豆 异黄酮的含量[1]. 分析测试学报, 2003, 22(6): 142 145.
- 10 苏菊、肖白曼、刘宁, 等. 高效液相色谱法测定保健食品中的大豆 异黄酮 JJ. 生物技术, 2005, 15(4): 54-56.

#### DETERMINATION OF GENISTEIN AND DAIDZEIN IN SOYBEAN RESIDUE BY HPLC

Ruan Hongsheng Ge Wenzhong An Hongbo

(Life Science and Technology College, HLJ August First Land Reclamation University, Daqing 163319)

**Abstract** To establish the determination method of Genistein and Daidzein in soybean residue, HPLC was adopted. In this method ODS C18 column was used, methanol water (6:4) was used as a mobile phase. The detection wave length was at 260nm. This method is simple and the result is reliable.

Key words Soybean residue; Genistein; Daidzein; HPLC