导入外源总 DNA 选育大豆新品种的后代 处理方法初探

吴秀红¹ 李希臣² 郭 泰¹ 雷勃钧² 齐 宁¹ 刘昭军² 张荣昌¹ 胡喜平¹ 王志新¹

(1. 黑龙江省农科院合江农科所, 佳木斯 154007; 2. 黑龙江省农科院生物技术中心)

摘要 本文报导了在利用花粉管通道技术导入外源总 DNA 选育大豆新品种的过程中,两种后代处理方法的对比产生了不同的选种效果,结果指出,同一组合内, D_0 代以英为单位收获、脱粒; D_1 代按英种植,英间设置隔离; D_2 代以后形成英系的系统方法,即按英种,更便于选种。

关键词 外源总 DNA; 选育; 大豆新品种; 后代处理方法

中图分类号 S565. 1 S336 文献标识码 A 文章编号 1000-9841(2001)02-0098-04

0 前言

利用开花植物授粉后形成的花粉管通道,直接导入外源 DNA 来转化受体的尚不具备正常细胞壁的卵、合子或早期胚胎细胞,进而实现某些目的性状或基因转移技术,自 70 年代由我国学者周光宇先生提出后,相继在多种作物上取得了成功的转化效果,使我国农业分子育种率先进入了应用阶段 ¹⁻⁴。据报导,在棉花^[2]、水稻^[3]、小麦^[5]、高梁^{6]}等作物中已得到基因表达。黑龙江省农科院生物技术研究中心,利用该技术获得了一系列大豆新品系,并育成转化的大豆品种黑生 101,黑龙江省农科院合江农科所和省内几家大豆育种单位与该中心协作,也开展了此项工作,进展较慢,其中原因是多方面的,但主要是育种技术不够成熟。本文

针对 DNA 导入后代的种植方法和选择方法进行了研究,旨在完善该项育种技术。外源 DNA 导入后代的种植与选择是该育种技术的重要环节,以往报导 DNA 导入后代的处理均是把 D₀ 代种子全部按组合混收、混脱,混种,结果易造成种植与选择的群体逐年增大,不便于田间观察与选择,容易使变异材料丢失,而未转化的材料不能去除,育种效果不好,为了改进此问题,我所于 1997~1999 年对此进行了研究,本文即报导该结果。

1 材料与方法

1.1 材料

1.1.1 受体:选用丰产性好、综合性状优良的大豆品种或品系合丰 25、合丰 35; 垦农 4号、垦农 7号、

表 1 供试组合表

Table 1 Testing combination

世代 Generation					组合号 No.o	f combination	1			
D_1	D9801	D9802	D9803	D9804	D9805	D9806	D9807	D9808	D9809	D9810
\mathbf{D}_{2}	D97206	D97207	D97208							
D_3	D96191	D96192	D96193	D96194	D96195					

收稿日期:1999-12-27

基金项目: 本研究属黑龙江省科委"九五"重大项目"外源 DNA 直接导入技术在农作物育种上的应用"的专题资助部分. 所用 DNA 由主持单位黑龙江省农科院生物技术研究中心提供。

²¹⁹⁹⁴⁻²⁰¹⁶ China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

绥农 10号;合交 93-1538 做受体。

供体: 选用多花荚材料合交 87U-65、远缘荚粒数多的红小豆; 抗灰斑病材料合丰 34 号、合丰 29 号、东农 975、垦农 7 号、绥农 10 号。

1. 1.2 D₁ 代 10 个组合; D₂代 3 个组合; D₃ 代 5 个组合(见表 1)

1.2 方法

- 1.2.1 按组合混种: D₀ 代种子按组合混收、混脱,以后世代按育种目标进行选择,以组合为单位混种、混收。
- 1.2.2 以荚为单位种植: Do 代每个组合以荚为单位收获、脱粒; D1 代按组合以荚为单位单粒点播, 荚

与荚之间设置隔离,组合前种植供体与受体。秋季,来自同一个荚的不同单株单收。以后世代按育种目标进行选择,同一组合内按荚系为单位种植株系或株系群。

2 结果与分析

- 2.1 两种后代处理方法产生了不同的选种效果
- 2.1.1 按荚种, D_1 代荚与荚之间设置隔离, 把要观察的大群体划分为若干小块, D_2 、 D_3 代形成荚系, 这就相当于把混种群体按遗传基础归类, 大大降低田间选择的强度, 使田间调查更准确无误。

表 2 1999年 D₁代田间种植与选择情况

Table 2 D₁ generation being planted and selected in 1999

组合号 No. of combination	受体+供体 Recipient + Donor	导入目的 Aim of introduction	种植方法 Planting method	英数 Number of pods	变异情况 Mutation
D9801	合交 93—1538+ 垦农 7 Hejiao93—1538+Kennong7	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	6	无 No
D9802	合交 93-1538+ 绥农 10 Hejiao93-1538+Suinong10	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	7	无 No
D9803	合交 93—1538+ 东农 975 Hejiao93—1538+Dongnong975	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按荚种 Pod by pod	13	无 No
D9804	合交 93—1538+红小豆 Hejiao93—1538+Hongxiaodou	丰产 High—yield	按英种 Pod by pod	9	无 No
D9805	垦农 7+ 红小豆 Kennong7+ Hongxiaodou	丰产 抗灰斑 High— yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	6	有变异 Yes
D9806	绥农 10+红小豆 Suinong10+Hongxiaodou	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora sojina</i>	按英种 Pod by pod	19	有变异 Yes
D9807	东农 975+红小豆 Dongnong 975+ Hongxiaodou	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	10	无 No
D9808	合丰 25+ 垦农7 Hefeng 25+ Kennong7	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	3	无 No
D9809	垦农 4+绥农10 Kennong4+Suinong10	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	16	无 No
D9810	合丰 35+东农975 Hefeng35+Dongnong975	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora soj ina</i>	按英种 Pod by pod	4	无 No

选种圃 D₁ 代中,组合 D9805 与 D9806 发生的变异即是在该种处理方法下,清晰地被观察到。组合 D9805 (垦农 7+红小豆)受体结荚习性为无限型,其中,D9805—6 是一个两粒荚,来自该荚的两植株均

为亚有限、分枝带帽结构,丰产性很好且抗灰斑病的变异株; D9806—18(绥农10+红小豆, 绥农10为无限型,荚皮色为草黄色)是一个一粒荚,产生的植株为亚有限、分枝带帽且荚皮色为深褐色与供体类似

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

的变异株,该株抗灰斑病(见表2)。

2.1.2 由于 1998 年 D_1 代的群体过大且没观察到变异,只能全部摘荚混收 D_2 代仍未观察到变异,为不丢失材料, 秋季逐株摘荚混收, D_3 代的选择群体将会更大, D_3 代若仍无变异发生,则只能淘汰组合(见表 3)。

2.1.3 组合 D96191 ~ D96195 在 D₃ 代仍无变异,则淘汰(见表 4)。

2.1.4 D₃代的情况

自表 3 与表 4 结果可看出,导入未于 D_2 与 D_3 代产生变异。也可能变异微小,难以鉴定分离,而将材料淘汰。

表 3 1999年 D₂代田间种植与选择情况

Table 3 D₂ generation being planted and selected in 1999

组合号 Na of combination	受体+供体 Recipient + Donor	导入目的 Aim of introduction	种植方法 Planting method	垄数 Number of rows	变异情况 Mutation
D97206	合丰 25+ 红小豆 Hefeng 25+ Hongxiaodou	丰产 High— yield	混种 Mixing pod	20	无 No
D97207	合丰 25+ 合丰 29 Hefeng 25+ Hefeng 29	丰产 抗灰斑 High— yield and resisting to <i>Cercospora sojina</i>	混种 Mixing pod	18	无 No
D97208	合丰 35+ 红小豆 Hefeng35+ Hongxiaodou	丰产 High— yield	混种 Mixing pod	19	无 No

表 4 1999年 D₃代田间种植与选择情况

Table 4 D₃ generation being planted and selected in 1999

组合号 No. of combination	受体+供体 Recipient + Donor	导入目的 Aim of introduction	种植方法 Planting M et hod	垄数 Number of rows	变异情况 Mutation
D96191	合丰 25+ 合丰 34 Hefeng 25+ Hefeng 34	丰产 抗灰斑病 High— yield and resisting to <i>Cercospora soj ina</i>	混种 Mixing pod	5	无 No
D96192	合丰 25+绥农10 Hefeng 25+Suinong10	丰产 抗灰斑病 High—yield and rresisting to <i>Cercospora sojina</i>	混种 Mixing pod	5	无 No
D96193	合丰 25+ 合丰 29 Hefeng 25+ Hefeng 29	丰产 抗灰斑病 High— yield and resisting to <i>Cercospora sojina</i>	混种 Mixing pod	5	无 No
D96194	垦农 4+合丰 29 Kennong4+Hefeng29	丰产 抗灰斑病 High—yield and resisting to <i>Cercospora sojina</i>	混种 Mixing pod	5	无 No
D96195	合丰 25+ 合 87 U-65 Hefeng 25+ He87U-65	丰产 High [—] yield	混种 Mixing pod	10	无 No

2.1 由上述结果分析得两种后代处理方法图谱:

2.1 按荚种:

 D_0 一个英 \rightarrow D_1 两个单株 [a 变异,下一年种株行。

(每单株遗传基础相同) lb 没变异

D2 两株行

「a 变异,按变异情况分别种植。

(每株行遗传基础相同) b 没变异,选单株,可自由控制选种量。

D3 两株行

「a没变异,淘汰。

(每株行遗传基础相同) lb 变异, 各株行变异情况一致, 明年种株系。

2.2 混种:

D₀ 一个组合 →D₁ 近百个单株 数十个荚

「 a有变异 「i 选变异株,下一年种株行。 lii 剩下摘荚混收。

→D1 近百个单株 b 没变异,从这近百个单株中观察有无变异,非常困难,为不丢失材料,只能全部混收,无法区别哪几个遗传基础,无法控制选种量。

b+ii 混种 (D_2 代数以万计个单株的大群体, 在这样 a 变异 b+ii 混种 (b+ii) 混种 (b+ii 混种 (b+ii) 混种 (b+ii) 混构 (b+ii) b+ii) b+ii b+iii b+ii b

b+jj 大群体内选单株,剩下的淘汰,则将丢失发生在 D_3 代的变异,由于分子育种一个很大的作用在于,它能打破物种的界限,促进远缘基因的交流以解决以往远缘杂交上遇到的难题。 因此,远缘基因在受体中的表达,目前还不十分清楚,所以更不能在早代轻意丢弃材料。

3 结论

- 3.1 由此说明, D_0 代种子按组合单荚收获、脱粒; D_1 代按荚种植、荚间设置隔离, 以后世代形成遗传基础完全一致的荚系, 这一新的后代处理方法更适合利用花粉管通道技术导入外源总 DNA 选育大豆新品种。荚系法便于观察和做遗传分析。
- 3.2 导入转化率在同一世代,对混种的同一组合, 群体内遗传组成不相同,变异表达情况不同,D₂、D₃

代不宜轻易丢弃材料。

3.3 混种,易造成变异材料丢失,从而丢失组合。

参考文献

- 1 周光宇, 翁坚, 龚蓁蓁, 等[]]. 中国农业科学, 1988, 21(3), 1~6
- 2 黄骏麒, 钱思颖, 刘桂玲[J]. 中国农业科学, 1986, 19(3), 32~36
- 3 段晓岚,陈善葆[J]. 中国农业科学,1985,18(3),6~10
- 4 雷勃钧, 尹光初, 卢翠华, 等[J]. 大豆科学, 1991, 10(1), 58~62
- 5 王亚馥, 陈光明, 焦成瑾, 等[J]. 作物学报 1995, 21(4): 404~411
- 6 王黎明, 阴秀卿, 焦少杰[J]. 黑龙江农业科学, 1994, (3): 17~20

PRELIMINARY STUDY ON METHOD OF SELECTING NEW SOYBEAN VARIETY THROUGH FOREIGN TOTAL DNA INDUCTION

Wu Xiuhong¹ Li Xichen² Guo Tai¹ Lei Bojun² Qi Ning¹ Liu Zhaojun² Zhong Rongchong¹ Hu Xiping¹ Wang Zhixin¹

(1. Hejiang Agricultural Institute of Helongjiang Academy of Agricultural Science 154007;

2. Heilongjiang Academy of Agricultural Sciences, 150086)

Abstract In the course of selecting new soybean variety through foreign total DNA induction, two selecting progeny methods and their selecting effect were compared. Come up with: in same combination, harvest each pod at D_0 generation, sow each pod and isolate it at D_1 generation, sow population of each pod after D_1 generation. This method is suit to select on of new soybean variety through foreign total DNA induction.

Key words Foreign total DNA; Select; New soybean variety; Method of selecting progeny