两个大豆品种的比较营养*

吴明才 肖昌珍

(中国农业科学院油料作物研究所)

提 要

本文揭示了黄淮大豆产区二个推广品种豫豆8号、中豆19各生育期器官干 重、N、P、K 浓度变化:中豆 19 对三要素的吸收速率、转运率低于豫豆 8 号;二品 种在高产密度下比其它密度下生产 1kg 籽粒产量所需三要素量低。豫豆 8 号高 产密度为1.2万株, 亩产大豆299.2kg, 生产1kg籽粒产量需N、P、K分别为 0.1529、0.0174、0.0643kg,中豆19的高产密度为1.6万株,亩产197.8kg、形成 1kg 籽粒产量的需三要素分别为 0.1610、0.0213、0.0967kg,明显高于豫豆 8 号。

关键词 大豆;比较营养。

黄淮大豆产区是我国夏大豆主产区,由于对品种的提纯复壮工作薄弱,品种更换频 繁,以致产生品种多、乱、杂现象。加之对主要推广品种营养特点研究较少[1,3],引种推广往 往无所适从。为此,引用当前黄淮大豆产区二个有希望新品种进行了比较营养研究,试图 为引种,高产栽培提供理论依据。

材料和方法

供试品种株型差异明显,豫豆8号植株高大,叶狭长;中豆19株矮,叶中等,牛育期较 前者略短。根据品种株型特点,在高产水肥条件下设不同密度处理。 豫豆 8 号密度为 1.2 ~2.7万,处理间相差 0.3万株, 计 6 个处理。中豆 19 密度从 1.0~1.8万株, 处理间相差 0.2万株,计5处理。设每品种亩植1.8万株不施肥为对照。小区面积0.025亩,随机排 列,四次重复。供试土壤为二合土,土壤肥力为中上水平。除对照处理外,其余处理施等量 N、P 肥,栽培管理均相同。于大豆各生育期取有关处理植株,分器官进行干重、N、P、K 测 定。全N用凯氏半微量法,全磷用钼锑抗比色法,全K用火焰光度计测定。

This paper was received on April 1, 1991.

本文于1991年4月1日收到。

结果与讨论

二品种各生育期器官干重测定表明:根、叶部干重豫豆 8 号低于中豆 19,茎、籽粒重量及全株干重以豫豆 8 号高于中豆 19(图 1~3)。

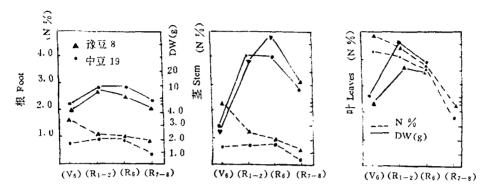


图1 不同生育期各器官 N 浓度及干重比较

Fig. 3 The seeds yield and protein

Fig. 2 Effect of different densities on

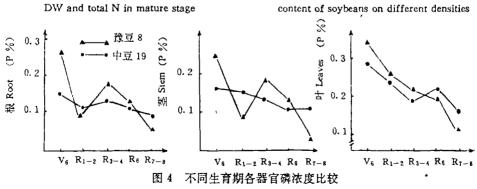


Fig. 4 Comparision of P concentration in soybeans 品种间各生育期 N、P、K 浓度变化趋势是:

(一)三要素浓度比较

- 1. 氮:根、茎、叶部全氮,中豆 19 低于豫豆 8 号,与干重结果相反。种子和全株全氮则是豫豆 8 号高于中豆 19(图 1~3)。
 - 2. 磷:根、茎、叶部总磷量,均为中豆19前期低于豫豆8号,后期则相反(图4)。
 - 3. 钾:根、茎中钾浓度均是豫豆 8号低于中豆 19,叶部则相反(图 5)。

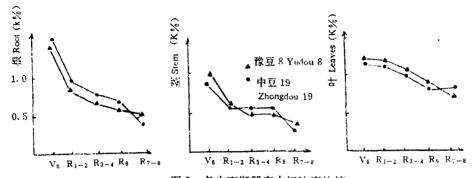


图 5 各生育期器官中钾浓度比较

Fig. 5 Comparision of K concentration in soybean organs

(二)吸收速率

1. 级: 各生育期吸氮速率消长呈鞍形。即花前期较高,花期低,荚期最高,此后 流低。二品种全生育期吸氮速率高低差异大,豫豆8号平均0.1692Ng/日·株,中豆19为 0.1107,前者较后者高52.8%(表1)。

表 1 二品种吸 N 速率、日增于重比较

Table 1	Comparision of N	absorptivity and increase	e dry weight/day	in different soybean CV

品 项 种 CV	育期 Growth stage	花前期 R6	花 期 R ₁₂	英 期 R ₃₋₄	鼓 粒 期 R ₅	成 熟 期 R: -8
豫豆8号 Yudou8	吸急速率 (N克/日・株) N absoyption speed (N. g/day・plant)	0. 0314	0.0104	0. 4089	0. 3953	C
	日培干重(克/日・株) Dry weight/day	0.7435	0. 8500	21. 7900	5. 5700	0.4900
中豆 19 Zhoudou 19	吸氣速率 (N·g/day·plant)	0. 0295	0.0069	6. 3069	0, 2059	0 0043
	日增干重 (Dry weight/day)	0.9700	0.4000	14. 2000	4. 9700	6. 5700

- 2. 磷:二品种吸磷速率消长趋势同 N(表 2)。从表 2 看出,豫豆 8 号从荚期到玻粒期有一吸磷持续高峰期,中豆 19 品种则在荚期以后吸磷速率锐诚。全生育期平均吸磷速率亦以豫豆 8 号高于中豆 19,分别为 0.0179、0.0094。
- 3. 钾:二品种吸钾速率消长趋势与吸氮大体相似。如豫豆 8 号品种花前期吸钾速率每 株每日吸收 0. 0097 克,花期为 0. 0169 克,荚期、鼓粒期分别为 0. 0406、0. 3894 克,或熟期则停止吸收。

表 2	品种间	吸磷速率	日均日	F重比较

Table 2 Com	parision of P	absovption s	speed and incre	ase of dry wei	ght/day in s	oybean CV
-------------	---------------	--------------	-----------------	----------------	--------------	-----------

品 項 种 CV	育期 Growth stage	花前期 Ra	花 期 R ₁₋₂	荚 期 R ₃₋₄	· 鼓 粒 期 Re	成熟期 R _{7~8}
豫夏8号 Yudou 8	吸P速率 (P克/日・株) Absorption P. speeds (Pg/day・plant)	0.0021	0.0016	0. 0406	0. 0456	a
	日増干重(克/日・妹) Dry weight/day	0.7430	c. 8500	21, 7900	5. 5700	0.6900
中豆 19 Zhoudou 19	吸 P 速率(P 克/日・株) (P・g/day・plant)	0, 0025	0.0011	0. 0264	0. 0169	0
	日増干重(克/日・株) Dry weiyht/day	0. 9700	0.4000	14. 2000	4. 9700	0. 5700

(三)转运率

1. 氮: 鼓粒期从各器官调出的 N 素百分含量即为氮素转运率。分析表明,除茎以外,其余器官 N 素转运率均以豫豆 8 号大于中豆 19。全株平均转运率亦然,如除豆 8 号,中豆 19 亩植 1. 2 万株,其全株氮素转运分别为 5. 8275, 2. 6307 克,持留量分别为 4. 1442 克, 2. 3189 克。另外,器官中氮素转运率与密度负相关,但中豆 19 叶部例外(表 3)。

表 3 各器官 N 转运率比较

뫮 官 根部 茎 部 叶 部 叶 柄 全株 方 品 Organs Plant FF Root Stern Leaves Petiole 程 CV Equations a = 102.717678.5062 65.556 83. 6422 70.1962 直线方程 ŷ=a-bx b = -28.5635**-7.093**2 -3.6302-10.9191 -- 5. 3260 Regression equations 豫豆8号 r = -0.9740-0.3595 -0.7284-0.8155-0.7184Yudou 8 平均转运率(%) 47.27 60.41 58.12 62.54 58.44 Translation rates of average 125, 1133 15, 1117 74.8433 a = 直线方程 ŷ=a-bx -23.0000119, 1250 -12.0500b == Regression equation 中豆 19 -0.87580.9532··· 0. 7092 Zhondou 19 平均转运率(%) 53.15 12.97 83.71 49.54 Translation rate of average

Table 3 Coparision of N translation rate on different organ

2. 磷:各器官以至全株磷平均转运率,均是豫豆 8 号高于中豆 19。其中,根、茎部磷转运率差异明显,前品种较之高一个数量级,叶部及全株差异相对较小,如在密度 1.2 万株条件下,豫豆8号、中豆19单株转运率分别为0.1499克、0.6977克,单株持留量分别为0.2359克,0.2925克。器官及全株磷转运率与密度间关系无一定之规。如根、叶柄中磷的转运率与密度正相关,茎、叶及全株中磷的转运率与密度负相关(表 4)。

表 4	各器官磷转运率比较
-----	-----------

Table 4	Congrision of	P translation t	ate on different organ

	·			•		
品 方 P CV	官 Organs 程 Output	根 部 Root	茎 部 Stem	叶 部 Leaves	叶 柄 Petiole	全 株 Plant
豫豆8号 Yudou8	方程 ŷ=a+bx	a=7.0257 b=11.2762 r=0.2765	78. 9536 22. 3297 0. 6081	62. 7124 12. 8663 0. 6943	9. 6557 7. 7216 0. 3431	52. 6935 11. 2328 0. 6492
	平均转运率(%)	28. 04	23. 26	37.62	27. 01	30.79
中豆 19 Zhondou 19	方程 ŷ=a+bx	a = b = r =	_	_		29. 0367 -3. 0500 -0. 1100
	平均转运率(%)	5. 65	8. 87	29. 22		24. 45

前述二品种单产与密度有关(图 3),生产单位籽粒产量所需三要素量研究表明,亦与密度息息相关。如豫豆 8 号高产密度为 1.2 万株,亩产 299.2kg,密度增至 2.4 万株,单产仅 172.4kg,每生产 1kg 籽粒大豆分别需 N 0.1529、0.2655kg,需 P 0.0174、0.0363kg,需 K 0.0643、0.1595kg。而中豆 19 亩植 2 万株,单产为 153.6kg,其高产密度为 1.6 万株,单产为 197.8kg。每生产 1kg 大豆,分别需 N 0.1967、0.1610kg;需 P 0.0499、0.0219kg;需 K 0.0979、0.0967kg。可见在适宜密度下,品种生产单位籽粒产量所需三要素低于其它密度。中豆 19 在适宜密度生产单位籽粒产量所需三要素低于真它密度。中豆 19 在适宜密度生产单位籽粒产量所需三要素的量高于豫豆 8 号。

二品种比较营养研究结果表明,中豆 19 为需肥量较高品种。根据其营养特点,在高产密植条件下宜重施基肥,以氮为主,氮磷肥配合,花期追施一定速效磷,以利其耐溃抗倒,种子蛋氮酸含量高,以及增产潜力大于跃进 5 号等优势的发挥。豫豆 8 号则较耐瘠薄,增产潜力大而需肥量相对低,但苗势弱。花前期应加强促根管理,中后期应控,防止冠根比失调而倒伏。

我国大豆分布辽阔,影响大豆营养及产量的生态因素、如可控因素颇为复杂。农业系统工程理论与电子计算机应用现代水平,尚未超过六因素五水平,尤其是可控与不可控综合解析。因此,用系统论等现代高新理论技术,阐明品种不同生境下形成单位产量所需三要素量;至少目前决非易事。正如本文所述,密度对单位产量所需三要素影响颇大。其它环境因素亦对营养元素向根系的运动,对植物吸收与运转,关系甚密。如栽培生境中元素丰缺,制约大豆体内元素的平衡,影响器官发育与元素含量的高低[2]。生态诸因素中,水分对大豆生长发育、营养元素的吸收起关键作用[4],即使环境中营养元素可充分供应大豆正常生长发育,结荚期缺水,则导致大豆落荚、籽粒不饱满产量低,形成单位籽粒产量所需三要素量则高。本文报导的在适宜密度下形成单位籽粒产量所需三要素量,可反映八月大豆结荚期干旱环境的实际水平,与水肥条件正常时研究结果相比偏高[5,6]。

参考文献

- [1] 吴明才等,1989,黄淮地区中豆 19 高产栽培,(中国油料)4,69~71
- [2] 吴明才等,1990,大豆缺寮病诊断研究,《湖北农业科学》7:13~16
- [3] 杨孟佩等,1986,夏大豆营养生理及施肥技术研究,《大豆科学》4,317~325
- [4] 吴明才等,1991,夏大豆高产优化综合技术数学模型研究,(中国油料)2
- [5] Hanway, J, J., et al., 1971. Accumulation of N. P, and K by soybean [Clycine max (L)] plants, Agron. J. 63, 406~408
- [6] Harper, J. E., et al., 1971 Nodulation response of soybeans (Glycine max Merr) to application rate and placement of combined nitrogen. Crop Sci. 11:438~440

PRIMARY STUDIES ON COMPARATIVE NUTRITION OF TWO SUMMER SOYBEAN

Wu Mingcai Xiao Changzhen

(Institute of Oil Crops, CAAS)

Abstract

The experiment was carried out to study the changes of organs dry weight and N, P, K concentrition in all growing stages of Yudou 8 CV. and Zhondou 19 CV. that were widely planted in Yellow River and Hui River plain. The research results showed that: (1) Zhondou 19 was lower than Yudou 8 in dry weight of organs, N, P, K contents per plant, absorption speeds, and translation rates in all growing stages. (2) The needed amounts of N, P, K producing 1.0 kg seeds in high—yield densities in the two soybean CV. were lower than in other densities. The high—yield density of Yudou 8 was 12,000 plants/mu and the needed amounts of N, P, K producing 1.0 kg seeds were 0.1529, 0.0174 and 0.0643kg, respectively. However, the high yield density of Zhondou 19 was 16.00 plants / mu and the needed amounts of N, P, K producing 1.0 kg seeds were 0.1610, 0.0218 and 0.0967kg respectively.

Key words Summer soybean; Comparative nutrition