[1]王晓丽,王敏,岳爱琴,等.大豆TGL基因家族全基因组鉴定及高盐胁迫响应研究[J].大豆科学,2022,41(01):12-019.[doi:10.11861/j.issn.1000-9841.2022.01.0012]
 WANG Xiao-li,WANG Min,YUE Ai-qin,et al.Genome-Wide Identification of Soybean TGL Gene Family and The Response to High Salt Stress[J].Soybean Science,2022,41(01):12-019.[doi:10.11861/j.issn.1000-9841.2022.01.0012]
点击复制

大豆TGL基因家族全基因组鉴定及高盐胁迫响应研究

参考文献/References:

[1]LIN J X, LI Z, SHUAI S, et al. Effects of various mixed salt-alkaline stress conditions on seed germination and early seedling growth of leymus chinensis from songnen grassland of China[J]. Notulae Botanica Horti Agrobotanici Cluj-Napoca, 2014, 42(1): 154-159.[2]吴耀荣, 种康, 谢旗. 植物响应非生物胁迫机制的研究进展及趋势[J]. 中国基础科学, 2016, 18(1): 35-40. (WU Y R, CHONG K, XIE Q. Research progress and trend of plant response to abiotic stress[J]. Basic Science of China, 2016, 18(1): 35-40.)[3]GUAN R X, QU Y, GUO Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3[J]. The Plant Journal, 2014, 80(6): 937-950.[4]QI X P, LI M W, XIE M, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing[J]. Nature Communications, 2014, 5(7): 4340-4350.[5]HAO Y J, WEI W, SONG Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. The Plant Journal,2011,68(2): 302-313.[6]WANG F, CHEN H W, LI Q T, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. The Plant Journal,2015,83(2): 224-236.[7]CHAI C L, WANG Y Q, VALLIYODAN B, et al. Comprehensive analysis of the soybean (Glycine max) GmLAX auxin transporter gene family[J]. Front Plant Science,2016,7: 282-294.[8]JI W, ZHU Y, YONG L,et al. Over-expression of a glutathione stransferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco[J]. Biotechnology Letters, 2010,32: 1173-1179.[9]LAN Y, CAI D, ZHENG Y Z, et al. Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance[J]. Journal of Integrative Plant Biology, 2005,47: 613-621.[10]LI Z Y, XU Z H, HE G Y, et al. Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2012,427: 731-736.[11]YAN J H, WANG B A, JIANGY N, et al. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance[J]. Plant and Cell Physiology,2014,55: 74-86.[12]THELEN J J, OHLROGGE J B. Metabolic engineering of fatty acid biosynthesis in plants[J]. Metabolic Engineering, 2002, 4: 12-21.[13]ZALE J, JUN J H, KIM J Y, et al. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass[J]. Plant Biotechnology Journal, 2016, 14: 661-669. [14]SANDOVAL G, HERRERA-LOPEZ E J. Lipase phospholipase and esterase biosensors[J]. Methods in Molecular Biology, 2018, 1835: 391-425.[15]CASAS-GODOY L, GASTEAZORO F, DUQUESNE S, et al. Lipases:An overview[J]. Methods in Molecular Biology, 2018,1835: 3-38.[16]CHAPMAN K D, OHLROGGE J B. Compartmentation of triacyl-glycerol accumulation in plants[J]. Journal of Biological Chemistry, 2012, 287: 2288-2294.[17]HENRY S A, KOHLWEIN S D, CARMAN G M. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae[J]. Genetics, 2012, 190: 317-349. [18]NOHTURFFT A, ZHANG S C. Coordination of lipid metabolism in membrane biogenesis[J]. Annual Review of Cell and Develop-mental Biology, 2009, 25: 539-566.[19]FAN J, YU L, XU C. A central role for triacylglycerol in membrane lipid breakdown, fatty acid β-Oxidation, and plant survival under extended darkness[J]. Plant Physiology, 2017, 174: 1517-1530. [20]PADHAM A K, HOPKINS M T, WANGTW, et al. Characterization of a plastid triaeyclglyeerol lipase from Arabidopsis[J]. Plant Physiology, 2007, 143: 1372-1384.[21]WEICHERT H, KOLBE A, KRAUS A, et al. Metabolic profiling of oxylipins in germinating cucumber seedlings-Lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes[J]. Planta, 2002, 215: 612-619.[22]EASTMOND P J. Sugar-dependent1 encodes a patatin domain tria-cylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds[J]. Plant Cell, 2006, 18: 665-675. [23]LU J, XU Y, WANG J, et al. The role of triacylglycerol in plant stress response[J]. Plants, 2020, 9: 472.[24]EL-GEBALI S, MISTRY J, BATEMAN A,et al. The Pfam protein families database in 2019[J]. Nucleic Acids Research, 2019, 47: D427-D432.[25]KONG Y, CHEN S, YANG Y, et al. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress[J]. FEBS Letters, 2013, 587: 3076- 3082. [26]石广成, 杨万明, 杜维俊, 等. 大豆耐盐种质的筛选及其耐盐生理特性分析[J/OL].生物技术通报:1-10[2021-12-30].DOI:10.13560/j.cnki.biotech.bull.1985.2021-0843. (SHI G C, YANG W M, DU W J, et al.Screening of salt-tolerant soybean germplasm and analysis of physiological charactersitics of its salt tolerance[J].Biotechnological Bulletin:1-10[2021-12-30].DOI:10.13560/j.cnki.biotech.bull.1985.2021-0843.)[27]BELAMKAR V, WEEKS N T, BHARTI A K, et al. Compre-hensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress[J]. BMC Genomics,2014,15: 950-974.[28]CHEN C, CHEN H, ZHANG Y,et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13: 1194-1202.[29]LESCOT M, THIJS G, MARCHAL K,et al. PlantCARE, a dat-abase of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30: 325-327.[30]SUN L, SONG G S,GUO W J, et al. Dynamic changes in genome-wide Histone 3 Lysine 27 trimethylation and gene expr-ession of soybean roots in response to salt stress[J]. Frontiers in Plant Science, 2019, 10: 1031.[31]HERNANDEZ M L, WHITEHEAD L, H E Z,et al. A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants[J]. Plant Physiology, 2012,160(1): 215-225.[32]师立松, 赵璇, 付雅丽, 等. 大豆GAPDH家族基因生物信息学及其逆境组织表达分析[J].大豆科学,2021,40(3): 299-308. ( SHI L S, ZHAO X, FU Y L, et al. Bioinformatics and tissue expression analysis of GAPDH family genes in soybean[J]. Soybean Science,2021, 40(3): 299-308.)[33]ZENG A L, CHEN P Y,KORTH K L,et al. RNA sequencing analysis of salt tolerance in soybean (Glycine max)[J]. Genomics, 2019, 111(4): 629-635.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2021-09-30

基金项目:山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(202105D121008-3-8);山西农业大学育种工程项目(YZGC096);山西省自然科学基金(201901D111225);山西农业大学农学院育种工程重点培育专项(YZ2021-05)。
第一作者:王晓丽(1997—),女,硕士研究生,主要从事大豆遗传育种研究。E-mail:1316661466@qq.com。
通讯作者:杜维俊(1968—),女,博士,教授,主要从事大豆遗传育种研究。E-mail:duweijun68@126.com。

更新日期/Last Update: 2022-01-28