[1]王宇,尤佳,陈傲霜,等.大豆胞囊线虫效应蛋白Hg16B09对植物免疫反应的抑制作用[J].大豆科学,2021,40(06):759-766.[doi:10.11861/j.issn.1000-9841.2021.06.0759]
 WANG Yu,YOU Jia,CHEN Ao-shuang,et al.The Heterodera glycines Effector Hg16B09 Suppresses Plant Innate Immunity[J].Soybean Science,2021,40(06):759-766.[doi:10.11861/j.issn.1000-9841.2021.06.0759]
点击复制

大豆胞囊线虫效应蛋白Hg16B09对植物免疫反应的抑制作用

参考文献/References:

[1]Koenning S R, Wrather J A. Suppression of soybean yield poten-tial in the continental United States by plant diseases from 2006 to 2009[EB/OL]. Plant Health Progress, 2010, 11(1).DOI:10.1094/PHP-2010-1122-01-RS.[2]段玉玺. 植物线虫学[M]. 北京: 科学出版社, 2011. (Duan Y X. Plant nematology [M]. Beijing: Science Press, 2011.)[3]Wang D,Duan Y X, Wang Y Y, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China[J]. Plant Disease, 2015, 99(6): 893.[4]Peng D L, Peng H, Wu D Q, et al. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia China[J]. Plant Disease, 2015, 100(1): 229. [5]刘世名, 彭德良. 大豆的孢囊线虫抗性研究新进展[J]. 中国科学:生命科学, 2016, 46(5): 535-547. (Liu S M, Peng D L. Recent progresses on soybean resistance to soybean cyst nematode[J]. Scientia Sinica Vitae, 2016, 46(5): 535-547.)[6]Niblack T L, Colgrove K B, Colgrove A C. Soybean cyst nematode in Illinois from 1990 to 2006: Shift in virulence phenotype of field populations[J]. Journal of Nematology, 2006, 38(2): 285.[7]Acharya K, Tande C, Byamukama E. Determination of Heterodera glycines virulence phenotypes occurring in South Dakot[J]. Plant Disease, 2016, 100(11): 281-286. [8]Jones J,Dangl J. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.[9]Manosalva P, Manohar M, Von Reuss S H, et al. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance[J]. Nature Communications, 2015, 6: 7795.[10]Mendy B, Ombe M W W, Radakovic Z S, et al. Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes[J]. PLoS Pathogens, 2017, 13(4): e1006284.[11]Klessig D F, Manohar M, Baby S, et al. Nematode ascaroside enhances resistance in a broad spectrum of plant-pathogen systems[J]. Journal of Phytopathology, 2019,167: 265-272.[12]赵洁, 彭德良, 刘世名. 植物寄生线虫效应子研究进展[J]. 植物保护学报, 2020, 47(2): 245-254. (Zhao J, Peng D L, Liu S M. Progresses in the researches on the effectors of plant parasitic nematodes[J]. Journal of Plant Protection, 2020, 47(2): 245-254.)[13]Ali M A,Azeem F, Li H, et al. Smart parasitic nematodes use multifaceted strategies to parasitize plants[J]. Frontiers in Plant Science, 2017, 8: 1699.[14]姚珂, 郑经武, 黄文坤, 等. 植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J]. 植物病理学报, 2020, 50(5): 517-530. (Yao K, Zheng J W, Huang W K, et al. Research progress on the regulation of host defense by plant parasitic nematode effectors[J]. Acta Phytopathologica Sinica, 2020, 50(5): 517-530.)[15]Riggs R D.Ultrastructural changes in Peking soybeans infected with Heterodera glycines[J]. Phytopathology, 1973, 63(1): 76-84.[16]Kandoth P K, Ithal N, Recknor J, et al. The soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells[J]. Plant Physiology, 2011, 155(4): 1960-1975.[17]Gao B L, Allen R, Maier T, et al. The parasitome of the phyto-nematode Heterodera glycines[J]. Molecular Plant-Microbe Interactions, 2003, 16(8): 720-726.[18]Noon J B,Hewezi T, Maier T R, et al. Eighteen new candidate effectors of the phytonematode Heterodera glycines produced specifically in the secretory esophageal gland cells during parasitism[J]. Phytopathology, 2015, 105(10): 1362-1372.[19]Gardner M,Dhroso A, Johnson N, et al. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines[J]. Scientific Reports, 2018, 8: 2505.[20]Masonbrink R, Maier T R, Muppirala U, et al. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes[J]. BioMed Central, 2019, 20(1): 119.[21]Lambert K N,Bekal S, Domier L L,et al. Selection of Heterodera glycines chorismate mutase-1 alleles on nematode-resistant soybean[J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 593-601.[22]Bekal S, Niblack T L, Lambert K N. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows poly-morphisms that correlate with virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(5): 439-446. [23]Bekal S, Domier L L, Gonfa B, et al. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence[J]. PLoS One, 2015, 10(12): e0145601.[24]Ste-Croix D T, St-Marseille A F G, Lord E, et al. Genomic profiling of virulence in the soybean cyst nematode using single-nematode sequencing[J]. Phytopathology, 2020, 111(1): 137-148.[25]Hu Y, You J, Li C, et al. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response[J]. Plant Science, 2019, 289: 110271.[26]Yang S S, Dai Y R, Chen Y P,et al. A novel G16B09-like effector from Heterodera avenae suppresses plant defenses and promotes parasitism[J]. Frontiers in Plant Science, 2019, 10:66.[27]Chen S, Chronis D, Wang X. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI[J]. Plant Signal Behavior, 2013, 8(9): e25359.[28]Wei C,Kvitko B H, Shimizu R, et al. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana[J]. Plant Journal, 2010, 51(1): 32-46.[29]Sacco M A,Koropacka K, Grenier E, et al. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2-and RanGAP2-dependent plant cell death[J]. PLoS Pathogens, 2009, 5(8): e1371.[30]Holsters M, de Waele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens[J]. Molecular & General Genetics, 1978, 163(2): 181-187.[31]Noon J B, Qi M, Sill D N, et al. Aplasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity[J]. New Phytologist, 2016, 212: 444-460.[32]Yeam I, Nguyen H P, Martin G B. Phosphorylation of the Pseudomonas syringae effector AvrPto is required for FLS2/BAK1-independent virulence activity and recognition by tobacco[J]. Plant Journal for Cell & Molecular Biology, 2010, 61(1):16-24.[33]Veljovic-Jovanovic S, Noctor G, Foyer C H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate[J]. Plant Physiology & Biochemistry, 2002, 40(6-8): 501-507.[34]Tukey J W. Some selected quick and easy methods of statistical analysis[J]. Transactions of the New York Academy of Sciences, 1954, 16(2): 88-97.[35]Mitchum M G, Hussey R S, Baum T J, et al. Nematode effector proteins: An emerging paradigm of parasitism[J]. New Phytologist, 2013, 199(4): 879-894.[36]Chen C L, Liu S S, Liu Q, et al. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense[J]. Plos One, 2015, 10(4): e0122256.[37]Lozano-Torres J L,Wilbers Ruud H P, Warmerdam S, et al. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors[J]. PLoS Pathogens, 2014, 10(12): e1004569.[38]Jaouannet M, Perfus-Barbeoch L, Deleury E, et al. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei[J]. New Phytologist, 2012,194(4): 924-931.[39]Lin B R,Zhuo K, Chen S, et al. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system[J]. New Phytologist, 2016, 209:1159-1173.[40]Zhuo K, Naalden D, Nowak S, et al. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism[J]. Molecular Plant Pathology, 2019, 20(3):346-355.[41]Wang J Y,Yeckel G, Kandoth P K, et al. Targeted suppression of soybean BAG6-induced cell death in yeast by soybean cyst nematode effectors[J]. Molecular Plant Pathology, 2020, 21(9): 1227-1239.[42]Pogorelko G, Wang J Y, Juvale P S, et al. Screening soybean cyst nematode effectors for their ability to suppress plant immunity[J]. Molecular Plant Pathology, 2020, 21(9): 1240-1247.[43]Adachi H, Nakano T,Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. The Plant Cell, 2015, 27(9): 2645-2663.[44]Adachi H,Ishihama N, Nakano T, et al. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016, 11(6): e1183085.[45]Li S, Han X, Yang L, et al. Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana[J]. Plant Cell and Environment, 2017, 41(1): 134-147.[46]Kud J, Wang W J, Gross R, et al. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling[J]. PLoS Pathogens, 2019, 15(4): e1007720.[47]Naalden D, Verbeek R, Gheysen G. Nicotiana benthamiana as model plant for Meloidogyne graminicola infection[J]. Nematology, 2018, 20 (5): 491-499.[48]Guo X, Chronis D, De La Torre C M, et al. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors[J]. Plant Biotechnology Journal, 2015, 13(6): 801-810.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]李 凯,刘志涛,李海朝,等.国家大豆区域试验品种对SMV和SCN的抗性分析[J].大豆科学,2013,32(05):670.[doi:10.11861/j.issn.1000-9841.2013.05.0670]
 LI Kai,LIU Zhi-tao,LI Hai-chao,et al.Resistance to Soybean Mosaic Virus and Soybean Cyst Nematode of Soybean Cultivars from China National Soybean Uniform Trials[J].Soybean Science,2013,32(06):670.[doi:10.11861/j.issn.1000-9841.2013.05.0670]
[12]李泽宇,李肖白,陈井生,等.大豆品种(系)抗大豆胞囊线虫14号生理小种的抗性鉴定研究[J].大豆科学,2014,33(03):408.[doi:10.11861/j.issn.1000-9841.2014.03.0408]
 LI Ze-yu,LI Xiao-bai,CHEN Jing-sheng,et al.Identification of Soybean Varieties for Resistance to Soybean Cyst Nematode Races 14[J].Soybean Science,2014,33(06):408.[doi:10.11861/j.issn.1000-9841.2014.03.0408]
[13]胡 新,许艳丽,LI Shu-xian,等.利用抗感品种混种防治大豆胞囊线虫效果的研究[J].大豆科学,2012,31(03):449.[doi:10.3969/j.issn.1000-9841.2012.03.023]
 HU Xin,XU Yan-li,LI Shu-xian,et al.Effect of Cultivar Mixture on Growth and Developoment of Soybean Inoculated with Soybean Cyst Nematode[J].Soybean Science,2012,31(06):449.[doi:10.3969/j.issn.1000-9841.2012.03.023]
[14]马雪瑞,段玉玺,陈立杰,等.利用抗坏血酸揭示小粒黑豆对胞囊线虫抗性的研究[J].大豆科学,2011,30(01):123.[doi:10.11861/j.issn.1000-9841.2011.01.0123]
 MA Xue-rui,DUAN Yu-xi,CHEN Li-jie,et al.Revealing Resistance of Xiaoliheidou to Soybean Cyst Nematode by Ascorbic Acid[J].Soybean Science,2011,30(06):123.[doi:10.11861/j.issn.1000-9841.2011.01.0123]
[15]陈立杰,万传浩,朱晓峰,等.Snea253生物种衣剂防治大豆胞囊线虫的研究[J].大豆科学,2011,30(03):459.[doi:10.11861/j.issn.1000-9841.2011.03.0459]
 CHEN Li-jie,WAN Chuan-hao,ZHU Xiao-feng,et al.Control Effects of Snea253 Biological Seed Coating on Soybean Cyst Nematode[J].Soybean Science,2011,30(06):459.[doi:10.11861/j.issn.1000-9841.2011.03.0459]
[16]袁翠平,沈波,董英山.中国大豆抗(耐)胞囊线虫病品种及其系谱分析[J].大豆科学,2009,28(06):1049.[doi:10.11861/j.issn.1000-9841.2009.06.1049]
 YUAN Cui-ping,SHEN Bo,DONG Ying-shan.Released Soybean Varieties Resistant to Cyst Nematode in China and Their Resistance Genetic Derivation[J].Soybean Science,2009,28(06):1049.[doi:10.11861/j.issn.1000-9841.2009.06.1049]
[17]刘大伟,段玉玺,陈立杰,等.灰皮支黑豆抗大豆胞囊线虫3号生理小种的生理机制[J].大豆科学,2010,29(03):471.[doi:10.11861/j.issn.1000-9841.2010.03.0471]
 LIU Da-wei,DUAN Yu-xi,CHEN Li-jie,et al.Physiological Mechanism of HuipizhiHeidou Resistant to Race 3 of Soybean Cyst Nematode[J].Soybean Science,2010,29(06):471.[doi:10.11861/j.issn.1000-9841.2010.03.0471]
[18]于佰双 段玉玺,王家军,李进荣,等.轮作植物对大豆胞囊线虫抑制作用的研究[J].大豆科学,2009,28(02):256.[doi:10.11861/j.issn.1000-9841.2009.02.0256]
 YU Bai-shuang,DUAN Yu-xi,WANG Jia-jun,et al.Rotation Crop Evaluation for Management of the Soybean Cyst Nematode[J].Soybean Science,2009,28(06):256.[doi:10.11861/j.issn.1000-9841.2009.02.0256]
[19]王雪,段玉玺,陈立杰,等.不同大豆品种根系对大豆胞囊线虫趋化性的影响[J].大豆科学,2008,27(06):1015.[doi:10.11861/j.issn.1000-9841.2008.06.1015]
 WANG Xue,DUAN Yu-xi,CHEN Li-jie,et al.Effects of Root from Different Soybean Cultivars on the Affinity Between Soybean Cyst Nematode and Soybean Root[J].Soybean Science,2008,27(06):1015.[doi:10.11861/j.issn.1000-9841.2008.06.1015]
[20]王惠,于佰双,段玉玺,等.大豆胞囊线虫抗性基因的SSR标记研究[J].大豆科学,2007,26(02):204.[doi:10.3969/j.issn.1000-9841.2007.02.018]
 WANG Hui,YU Bai-shuang,DUAN Yu-xi,et al.A SENSITIVE MOLECULAR MARKER SSR ASSOCIATED WITH RESISTANT GENE TO HETERODERA GLYCINES[J].Soybean Science,2007,26(06):204.[doi:10.3969/j.issn.1000-9841.2007.02.018]

备注/Memo

收稿日期:2021-05-28

基金项目:黑龙江省自然科学基金(YQ2019C026);中国科学院青年创新促进会人才项目(2020236)。
第一作者:王宇(1998—),女,在读硕士,主要从事资源利用与植物保护研究。E-mail:1119372970@qq.com。
通讯作者:胡岩峰(1985—),男,博士,副研究员,主要从事植物寄生线虫与寄主互作机理研究。E-mail:huyanfeng@iga.ac.cn。

更新日期/Last Update: 2021-12-30